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Abstract Research has demonstrated the effectiveness of
metaheuristic algorithms in addressing optimization chal-
lenges involving multi-objectives. These algorithms excel
in generating a range of solutions that not only approach
the Pareto front but are also evenly distributed. Multi-ob-
jective algorithms are effective for problems with two or
three objectives. However, their efficiency diminishes in
scenarios with many objectives, as the diversity selection
and convergence pressure become less effective. Balancing
convergence and diversity in multi-objective optimization
pose a significant challenge. In response, this study intro-
duces a novel many-objective multi-verse optimizer algo-
rithm named MaOMVO for addressing many-objective
problems. It integrates reference point and niche preserve
to improve convergence and diversity and employs an

P< Kanak Kalita
kanakkalita02 @gmail.com; drkanakkalita@veltech.edu.in

Department of Mechanical Engineering, Vel Tech
Rangarajan Dr, Sagunthala R&D Institute of Science and
Technology, Avadi 600062, India

Department of Machining, Assembly and Engineering
Metrology, Faculty of Mechanical Engineering, VSB-
Technical University of Ostrava, Ostrava 70800, Ostrava,
Czech Republic

Department of Biosciences, Saveetha School of Engineering,
Saveetha Institute of Medical and Technical Sciences,
Chennai 602105, India

Jadara University Research Center, Jadara University, Irbid,
Jordan

Department of Electrical Engineering, Shri K.J. Polytechnic,

Bharuch 392001, India

S Department of Mechanical Engineering, Sri Sairam Institute

of Technology, Chennai 600044, India

Published online: 21 October 2024

- Pradeep Jangir’* - Sundaram B. Pandya® - G. Shanmugasundar® -
Jasgurpreet Singh Chohan’ - Laith Abualigah®*!%11:1213

innovative information feedback mechanism technique for
population renewal. The superiority of the MaOMVO
algorithm is evident in tests with MaF problems having 5, 8
and 15 objectives, as well as five real-world problems
(RWMaOP1—RWMaOP5). It outperforms four leading
algorithms Many-objective moth flame optimization,
many-objective particle swarm optimization, non-domi-
nated sorting genetic algorithm-III and reference vector
guided evolutionary algorithm in terms of generational
distance by 70%, inverted generational distance by 52%,
spacing by 46.66%, spread by 55.55%, hypervolume by
52% and running time by 52% with concave, convex and
mixed pareto fronts, confirming its robustness in diverse
optimization scenarios.
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Abbreviations

GD Generational distance

IGD Inverted generational distance

SP Spread

SD Standard deviation

HV Hypervolume

RT Runtime

MaOMVO  Many-objective multi-verse optimizer

MaOMFO  Many-objective moth flame optimization

MaOPSO Many-objective particle swarm optimization

NSGA-III  Non-dominated sorting genetic algorithm-iii

RVEA Reference vector guided evolutionary
algorithm

IFM Information feedback mechanism

MaOPs Many-objective problems

POF Pareto-optimal front

MOEA/DD Multi-objective  evolutionary  algorithm
based on decomposition based dominance

K-RVEA Kriging reference vector guided
evolutionary algorithm

I-DEBA Indicator-based evolutionary algorithm

HypE Hypervolume estimation algorithm

VaEA Vector angle based evolutionary algorithm

6-DEA 0-dominance-based evolutionary algorithm

MPSO/D Multi-objective particle swarm optimization
based on decomposition

WS Weighted sum method

TSM Tchebycheff method

PBI Penalty-based boundary interaction

DoD Decomposition based dominance

Introduction

The domain of multi-objective optimization, particularly
with an emphasis on evolutionary and swarm intelligence
algorithms, has garnered significant interest from
researchers. The focus is on crafting algorithms that are
both powerful and capable, aimed at addressing issues of
varying complexity. These developments predominantly
leverage frameworks like Pareto-ranking [1], decomposi-
tion strategies [2], or methods based on specific indicators
[3]. The core goal of these algorithms is to effectively
tackle the optimization challenge as presented in Eq. (1).
This equation becomes particularly relevant when dealing
with more than three objectives.
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Minimize subject to:
f(x) = (i(x), - fu(x)), x € Q, (1)

where f(x) represents the goal function, x € Q denotes the
array of decision-making variables and Q symbolizes the
viable scope for exploration. Given the presence of
numerous optimal solutions to Eq. (1), the Pareto Domi-
nance concept is employed for their evaluation and com-
parison. The group of solutions that are optimal according
to Pareto criteria forms the Pareto-Optimal (PO) set shown
in Fig. 1.

In practical scenarios, it common to encounter problems
with multiple objectives. Some examples are—optimizing
the design of a bulldozer blade for soil cutting [4], struc-
tural topology optimization [5-7] and managing water
resources [8], etc. Such complex problems necessitate the
development of an algorithm capable of producing solu-
tions that are either close to or directly on the PO frontier.

Many-objective evolutionary and swarm algorithms
based on Pareto-ranking address the issue outlined in
Eq. (1). They commence by assigning a Pareto rank to each
solution, followed by the application of a mechanism that
preserves diversity. A significant challenge with these
algorithms is their diminished selection pressure in many-
objective optimization scenarios, where most solutions are
non-dominated [9]. In such cases, Pareto-ranking fails to
effectively differentiate between solutions and selection
hinges solely on the diversity preservation method. This
often results in subpar convergence and diversity among
solutions on the PO front [10]. To address this, researchers
have introduced modified Pareto-ranking methods [11],
including fuzzy o— dominance [12] and others. However,
these modified approaches still struggle to produce a
diverse set of solutions on the PO front.

£
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Consequently, the focus has shifted towards devising
more effective environmental selection methods. One
successful approach involves a reference-lines-based
framework, where solutions are selected via a series of
reference lines or vectors. NSGA-III [1] employs this
approach, introducing niche formation through solution
association with reference lines. An effective environ-
mental selection method is derived by favoring solutions
from less populated areas. Building on this concept, algo-
rithms such as MOEA/DD [13], VaEA [14] and various
many-objective PSO approach [15], Many-Objective Moth
Flame Optimization (MaOMFO) [16], Kriging Reference
Vector Guided Evolutionary Algorithm (K-RVEA) [17].

Decomposition-based algorithms for many-objective
optimization break down the problem outlined in Eq. (1)
into numerous scalar optimization tasks, each addressing a
single objective. These sub-tasks are crafted using com-
bined functions and tackled concurrently. According to a
study [18], one primary challenge in this approach is the
creation of weight vectors that effectively aid in producing
a varied range of solutions on the PO front. A further issue
is the choice of combined functions, like the Weighted
Sum (WS) method, Tchebycheff (TS) method and Penalty-
based boundary interaction (PBI) method, which often
struggle to accurately represent the full scope of the PO
front. To overcome these hurdles, MOEA/DD [13] inte-
grates dominance- and decomposition-based techniques.
Conversely, REVA [19] implements an angle-penalized
distance approach within a decomposed objective space,
using reference lines and selecting a single solution from
each sub-group. [-DEBA [20] improves 6 upon the PBI
method by prioritizing certain distances in the objective
space. 6—DEA [21] introduces a novel dominance relation
utilizing the PBI method. These represent some of the
decomposition-based algorithms that have been effective in
generating a diverse array of solutions on the PO front.

In the realm of indicator-based algorithms, fitness is
assigned to each solution based on specific indicators,
aiming for convergence on the PO front while ensuring
solution diversity. The hypervolume indicator is particu-
larly prevalent for its effectiveness in many-objective
optimization challenges. Its major drawback, however, is
the significant computational time required, which grows
exponentially with the increase in objectives. HypE [3]
addresses this issue by calculating hypervolume through
Monte-Carlo simulations. Other indicators, the unary
epsilon indicator [22], have also seen application. Despite
their strengths, these algorithms occasionally fall short in
generating a well-diversified set of solutions on the PO
front.

Decomposition-based and indicator-based algorithms
typically allocate a combined fitness value to each solution
in a population or swarm, aiming to achieve both

convergence and diversity at the same time. On the other
hand, Pareto-based algorithms assign a rank to each solu-
tion for convergence, followed by the application of a
method to preserve diversity. Nevertheless, there exists a
different category of algorithms that prioritize diversity
before dominance. For instance, 6—DEA [21], MPSO/D
[23] and DoD [24] are examples of such algorithms. These
methods create groups of solutions using a framework
based on reference lines and then select a single solution
from each group, employing either Pareto-ranking or a
novel dominance relationship.

In the domain of many-objective optimization, various
algorithms have been proposed, each with different
strategies to handle the increasing computational demands.
Many-Objective Evolutionary Algorithms (MOEAs) like
NSGA-III [1] and RVEA [19] have introduced mechanisms
such as reference points and angle-based selections to
improve diversity, but they face challenges in computa-
tional efficiency, particularly with high-dimensional
objectives. Swarm intelligence-based algorithms, including
Many-Objective Particle Swarm Optimization (MaOPSO)
[15] and MaOMFO [16], incorporate Pareto dominance
and diversity preservation techniques, leading to increased
computational time due to additional dominance checks.
Decomposition-based approaches like MOEA/DD [13]
decompose problems into scalar optimization sub-prob-
lems, yet the generation and management of weight vectors
add to the computational overhead. Indicator-based algo-
rithms such as HypE [3] utilize hypervolume to balance
convergence and diversity, but their computational costs
escalate with the number of objectives. Proposed
MaOMVO algorithm distinguishes itself by integrating
several unique strategies to reduce computational time
while maintaining solution quality. The Information
Feedback Mechanism (IFM) leverages historical data to
enhance convergence, reducing the need for repeated
dominance checks. The Reference Point-Based Selection
strategy ensures well-distributed solutions across the
objective space, minimizing the computational burden of
maintaining diversity.

MVO is renowned for its rapid convergence capabilities,
but ensuring diversity among the multi-verse in a universe
remains a significant challenge in multi- and many-objec-
tive optimization contexts. Research indicates that the
choice of verse in multi-objective MVO is pivotal, as it is
essential to focus on non-dominated solutions while also
preserving diversity among them.

In this research, a new strategy is introduced to enhance
the balance between convergence and diversity in many-
objective optimization by employing the Multi-Verse
Optimizer (MVO) [25], along with innovative components
such as an Information Feedback Mechanism, Reference
Point-Based Selection and Association, Non-dominated
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Sorting, Niche Preservation and Density Estimation in the
Many-Objective Multi-Verse Optimizer (MaOMVO). The
methodology involves selecting the MVO algorithm based
on its efficacy in generating diverse, high-quality solutions
for single-objective problems, thereby improving the
MaOMVO ability to navigate and utilize the search space
efficiently. An IFM addresses previous inefficiencies by
preserving aggregated historical data of individuals
through a weighted sum approach, enhancing convergence
capabilities. The adoption of a reference point-based
selection strategy ensures the selection of solutions that not
only approach the optimal front but are also distributed
across the entire objective spectrum, with solutions asso-
ciated with the nearest reference point by perpendicular
distance, marking well-represented areas. Furthermore, a
niche preservation tactic is proposed for individuals at the
boundaries of the search space, aimed at increasing
diversity and mitigating congestion in dense regions, thus
boosting the algorithm convergence rate. The inclusion of a
density estimation approach ensures a well-distributed and
extensive coverage of the population. The effectiveness of
the newly developed MaOMVO is validated through
comparisons with MaOMFO, MaOPSO, NSGA-III and
RVEA algorithms across MaF1-MaF15 benchmark sets
with 5, 8 and 15 objectives and five real-world
(RWMaOP1- RWMaOP5) problems. The results from
these experiments highlight MaOMVO capability to
adeptly manage various problem types, underscoring its
robust overall performance.

The paper organization includes an overview of MVO
algorithm in Sect. ”Multi-Verse Optimizer”, a presentation
of the proposed MaOMVO algorithm in Sect. ”Proposed
Many-Objective Multi-Verse Optimizer (MaOMVO)”,
experimental comparisons and evaluations in Sec-
t. ”Results and Discussions”. Finally, Sect. ”Conclusions”
summarizes the findings and suggests avenues for future
research.

Multi-Verse Optimizer

The MVO [25] is an algorithm inspired by the cosmolog-
ical multi-verse theory, incorporating elements like white
holes, black holes and wormholes shown in Fig. 2. This
cosmological perspective views white and black holes as
distinct astronomical entities with contrasting characteris-
tics: white holes being outlets for matter and energy and
black holes being their absorptive counterparts. Wormholes
serve as conduits linking parallel universes, enabling
instantaneous travel between different realms of time and
space.

MVO uses these astrophysical concepts in a metaphor-
ical sense shown in Fig. 3. Here, white and black holes
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symbolize the exploration and exploitation processes
within a search space, while wormholes represent paths for
optimal solutions across multiple universes. The algorithm
introduces an ‘expansion rate’ to reflect the dynamic and
evolving nature of the universe. This rate influences the
behavior of objects in the multi-verse, guiding them
towards stability through interaction with the white holes,
black holes and wormholes.

The following principles guide the MVO algorithm (as
per reference [25]):

e A higher expansion rate increases the likelihood of a
white hole and decreases that of a black hole.

e Universes with greater expansion rates dispatch matter
through white holes.

e Conversely, universes with lower expansion rates tend
to acquire matter via black holes.

e Independently of the expansion rate, all entities can
traverse wormholes, moving randomly towards the
most optimal universe.

MVO process begins by creating various random uni-
verses. In each cycle, entities transition between universes
based on their expansion rates, using white and black holes.
Additionally, entities in any universe might be teleported to
the most favorable universe through wormholes. This
procedure repeats until specific criteria are satisfied.

X111 X2 o Xid
X21 X2 ot X4

X=\." 7 . (2)
Xnl  Xn2 " Xnd

MVO universe generation is described by Eq. (2). Here,
‘n’ represents the number of universes, each signifying a
potential solution. ‘d’ denotes the matter content in each
universe, symbolizing solution parameters. Universe
updates follow Eq. (3):

XX/, r <NI(XX;)

xx/ = .
’ {XX{, r > NI(XX;)

(3)
where ‘XX/” is the i — th universe j — th matter, * NI(XX;)’
its normalized expansion rate and ‘XX,{’ the k — th universe
j — th matter. A roulette mechanism, influenced by the
expansion rate, determines white hole selection.
Additionally, wormholes can alter universe contents at
random, as shown in Eq. (4).

, {XX,{”, +TDR x ((ub —1b) x ry +1b), r3<05
XX = { ' XX},,, — TDR x ((ub — Ib) x ry + b), r3>0.5
XX, r > WEP

(4)

where ry, r3, r4 are random numbers in the interval [0,1]. In
the context of this model, the Travel Distance Rate (TDR)
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Fig. 2 A graphic overview of
white holes, black holes and
wormholes

Best universe created so far

Universey

Universes

Universes

Unitverse,
Fig. 3 MVO conceptual model

is a crucial parameter. It determines the extent to which an
object can be instantaneously moved via a wormhole to the
most favorable universe identified thus far. This rate of
travel distance escalates progressively with each iteration.
In parallel, the Wormhole Existence Probability (WEP) is
another key metric. It quantifies the likelihood of
wormholes being present within the universe, a
probability that systematically increases with each
iteration. The evolutionary patterns of both TDR and
WEP are encapsulated in the following mathematical
formulations:

WEP = 0.2 +1 x (?) (5)
[\/r
TDR =1 — (m) (6)

In Eq. (5) and Eq. (6) the algorithm efficiency depends
on iteration-based precision development (p), with higher
values ensuring quicker and more precise local searches
and L represents the maximum iteration number.

White/black

hole tunnel

Proposed Many-Objective Multi-Verse Optimizer
MaOMVO)

The MaOMVO algorithm begins by creating an initial
population of N random solutions, M number of objectives,
p number of partitions and generate a set of reference
points lismg Das and Dennis’s method
H=( ). as H =~ N. the current generation is ¢, x}
and x/ ™! thé) i-th individual at f and (7 + 1) generation. u"”
the i-th individual at the (¢+ 1) generation generated
through the MVO algorithm and parent population P;. the
fitness value of u/™ is /™' and U'*! is the set of u!™'.

Then, we can calculate x!™' according to u!™' generated
through the MVO algorithm and IFM in Eq. (7)
x§+1 = alut,+1 + azx;(;al :ft+1f}( ft’ 2
ft+1
_ft+l+f 01+ 0 =1 (7)

where x, is the k th individual we chose from the 7 th
generation, the fitness value of x} is f}, 0; and 0, are weight
coefficients. Generate offspring population Q,. Q, is the set
of x’+1 The combined population R, = P; U Q, is sorted
into different w-non-dominant levels
(F1,Fa,...,F;...,F,). Begin from Fy, all individuals in
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level 1 to [ are added to S; and remaining members of R, are
rejected. If |S;| = N; no other actions are required and the
next generation is begun with P,y = ;. Otherwise, solu-
tions in S,/F; are included in P,.; = S;/F; and the rest
(K =N — |P,41|) individuals are selection from the last
front, F; (described in Algorithm 1), incorporates a niche-
preserving operator. Each member of P,,; and F; is nor-
malized (as outlined in Algorithm 2) according to the
current population spread to ensure uniformity in objective
vectors and reference points. Subsequently, each member
is linked to a specific reference point by the shortest per-
pendicular distance (d()) (introduced in Algorithm 3),
creating a reference line from the origin to a designated

reference point. A strategic niching approach (explained in
Algorithm 5) is then applied to select members of F; linked
to under-represented reference points, with niche count p;
evaluated in P, ;. Should the termination condition remain
unmet, the process repeats otherwise, a new generation
P, is created and utilized to produce a subsequent pop-
ulation Q,,;. This selection method introduces a compu-
tational complexity scaled as (N2log"” 2N) or O(N*M).

Algorithm 1 Generation ¢ of MaOMVO algorithm with IFM
Procedure

Input: N (Population Size), M (No. of Objectives), MVO algorithm parameters,
and Initial population P,(1=0),
Output: Qwn1=MVO( Pri)
l: H Calculated using Das and Dennis's technique, structured reference
points Z*, supplied aspiration points Z%, S; = @, i = 1
2: Proposed Information Feedback Mechanism (IFM)
MVO algorithm apply on the initial population P, to generate u‘*!,
calculate x{*1 according to uf ™! can be expressed as follows:
t t+1
x{"’l = aluf“ + alez; 61 = ﬁ,az = ﬁ,al +62 =1
Or= 0Oy, (Q; is the set of x{ ™)
3: Ri=P U Ql
4. Different non-domination levels (Fi, F>,...,F) = Non-dominated-sort (R;)
5: repeat
6: Ss=8UF;andi=i+]
7: until | S/ | >N
8: Last front to be included: F) = UleF ;
9: if | S;| = N then
10: P1=8
11: else
12: Pz+I=St/F/
13: Point to chosen from last Front (F;) : K = N — |P, 4|
14: Normalize objectives and create reference set Z":
Normalize (", S, Z', Z*, Z*); Brief Explanation in Algorithm-2
15: Associate each member s of St with a reference point:
[(s),d(s)] = Associate (S,, Z"); Brief Explanation in Algorithm-3
% m(s): closest reference point,d: distance between s and 1 (s)
16: Compute niche count of reference pointj € Z” :
pPj = Zsest/Fl((”(S) =j),1:0);
17: Choose K members one at a time F; to construct
P,y : Niching(K,pj,m,d,Z",F;, Py, 1) ; Represent in Algorithm-4
18: end if
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Algorithm 2 Normalize (f,, S,, Z,/Z,) procedure

Input: S, Z% (structured points) or Z¢ (supplied points)
Output: f", Z" (reference points on normalized hyper-plane)
1: for =1 to M do
2: Compute ideal point: Z™™ = ming ¢, f; ()
3: Translate objectives: f, (s) =fi(s)— Zimm Vs €S,
4 Compute extreme points: Z/™* = s:
argming ¢ g, ASF(S, w/) = where w’/ = (el, ... ..,ej)T) ,
e =107%and Wjj =1
5: end for
6: Compute intercepts a; forj=1, .., M
7: Normalize objectives £ (X) using
(X
1 (X) =% Jfori=1,2,....M
8: if Z% is given then
9: Map each (aspiration) point on normalized hyper-plane
£ (X) and save the points in the set Z”
10: else
11: VAR
12: end if

Algorithm 3 Associate (S,,Z,) procedure

Input:
Output:

—

A B AR el

N
(s € s;),d(s € s;)
for each reference point Z € Z” do
Compute reference line w=z
end for
for each (s € s;) do
for cachw € Z" do
Compute d* (s,w) =s —wTs/llw
end for
Assign 7t(s) = w: argminy ¢ zr d*(s,w)
Assign d(s) = d* (s, (s))
end for
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Fig. 4 Flowchart of MaOMVO

Initialize the Population Size (N), No. of Objectives (M),
MVQO algorithm parameters and
population P, (t=0)

<
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4

Generate new population U™ using the
MVO Algorithm

Select the i-th individual from generation t
and the i-th individual from U"' to produce
a new individual x,""!

Q*Ux =

A
r0 [t ]

Non-dommatcd Sorting 2

v

I _(Fl > FZ’ . \\)

| Pe=S./ F,

v

Select N-| P| individuals from F, into Py,
according to the Normalization, Associated,
and Niche-preserving mechanisms

Information Feedback Mechanism

P =S,

l¢

Is termination
condition met?

Output Q¢ 1 =MVO(Pyy)
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Algorithm 4 Niching (K, p;, , d, Z,, F}, Py)

The flow chart of MaOMVO algorithm can be shown in Fig. 4.

Input: K,pj,n(s € $),d(s € 5),Z",F,
Output: P4

1: k=1

2: while k < K do

3: Jmin =+ argmin; ¢ z7p;}

4: J =random (Jouin )

5: I ={s: n(s) = j,s € F}

6: if I # ¢ then

7: if p; =0 then

: Piyg = Py U (5‘ argminse,}.ds)
9: else

10: Piy1 = Py Urandom (I;)
11: end if

12: pr=p;+1LF = F/s

13: k=k+1

14: else

15: Z" = Z"/{J}

16: end if

17: end while

Results and Discussions
Experimental Settings
Benchmarks

In order to verify the effectiveness of the MaOMVO, the
MaF1- MaF15 [26] benchmark and five real world engi-
neering design (Appendix 1): Car cab design (RWMaOP1)
[27], 10-bar truss structure (RWMaOP2) [28], Water and
oil repellent fabric development (RWMaOP3) [29], Ultra-
wideband antenna design (RWMaOP4) [30] and Liquid-
rocket single element injector design (RWMaOPS5) [31]
problems are used in this paper. These problems were
selected due to their diverse objective structures, realistic
engineering constraints, complex decision variables,
industrial relevance and variety of Pareto front shapes.
Each problem has been extensively studied, providing
benchmark data for rigorous comparison. The Car Cab
Design problem involves optimizing safety and perfor-
mance constraints; the 10-Bar Truss Structure problem
focuses on structural optimization under stress and

buckling constraints; the Water and Oil Repellent Fabric
Development problem optimizes fabric properties; the
Ultra-Wideband Antenna Design problem aims to enhance
communication system parameters; and the Liquid-Rocket
Single Element Injector Design problem addresses thermal
and structural performance in aerospace applications. This
selection ensures a comprehensive evaluation of
MaOMVO capabilities, demonstrating its robustness,
flexibility and practical utility in addressing complex
many-objective optimization problems. The number of
decision variables for the MaF problems is k + M — 1, M is
the number of objective functions. k is set to 10 in MaF1-
MaF6, k is set to 20 in MaF7-MaF15. The MaFs are
specifically designed to tackle various types of Pareto
fronts (PF), including concave, convex and mixed PFs and
are capable of handling up to 15 objectives, whether they
involve minimization or maximization tasks. These algo-
rithms have been tested and proven effective on the MaF
test problems, which encompass a wide range of properties
and challenges. For instance, MaF1 features a linear PF,
while MaF2 presents a concave PF. Other test problems
such as MaF3 and MaF4 exhibit convex, multimodal and
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Table 1 Properties of the quality indicators

Quality indicator[32] Convergence Diversity Uniformity Cardinality Computational Burden
GD 4

SD v

SP 4

RT v

IGD v v 4

HV 4 v 4 4

concave, multimodal PFs, respectively. Some problems
like MaF5 and MaF10 incorporate biases, whereas MaF6
and MaF8 deal with degenerate PFs. Additionally, the
algorithms can address mixed, disconnected and multi-
modal PFs as seen in MaF7 and they effectively handle
non-separable and deceptive PFs like those in MaF12.
Large-scale problems, both linear and convex, are repre-
sented by MaF14 and MaF15, respectively.

Comparison Algorithms and Parameter Settings

In this study, the performance of MaOMVO by empirically
comparing it with some state-of-the-art MOAs for MaOPs,
namely, MaOPSO [15], MaOMFO [16], RVEA [19] and
NSGA-III [1], will be verified.

Performance Measures

This paper adopts Generational distance (GD), Spread
(SD), Spacing (SP), Run Time (RT), Inverse Generational
distance (IGD) and Hypervolume (HV) quality indicator
[32], shown in Table 1 and Fig. 5. GD measures how far
the solutions obtained by an algorithm are from the true
Pareto front, IGD evaluates the distance between the true
Pareto front and the solutions obtained by the algorithm, SP
measures the uniformity of the distribution of solutions
along the Pareto front, SD assesses the extent to which the
solutions obtained by the algorithm spread along the
objectives, HV calculates the volume of the objective space
dominated by the solutions obtained by the algorithm and
RT measures the computational efficiency of the algorithm.
GD and IGD are complementary metrics that provide
insights into the proximity of the solutions to the true
Pareto front and the quality of the approximation of the
Pareto front, respectively. SP and SD ensure that the
solutions are not only close to the true Pareto front but also
well-distributed and spread across the objective space,
preventing clustering and ensuring diversity. HV is a
comprehensive metric that combines aspects of conver-
gence and diversity, providing a single measure to evaluate
the overall performance of the algorithm. RT is crucial for
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practical applications, ensuring that the algorithm is not
only effective but also efficient in terms of computational
resources.

Experimental Results on MaF Problems

Table 2 presents the Generational Distance (GD) metrics
for various algorithms, including MaOMVO, MaOMFO,
MaOPSO, NSGA-III and RVEA, across different problems
(MaF1 to MaF15) with varying dimensions (M). The GD
values are expressed in mean (std) format. In the context of
MaF1, MaOMVO demonstrates superior efficiency, par-
ticularly in lower-dimensional problems (M =5 and
M = 8), with its performance marginally declining as the
problem dimension increases (M = 15). This trend is
notable in comparison to MaOMFO and MaOPSO, where
MaOMVO consistently outperforms these algorithms in
terms of lower mean GD values. For MaF2 and MaF3
problems, MaOMVO maintains a competitive edge, par-
ticularly in lower dimensions, suggesting its robustness in
handling complex optimization landscapes. However, in
higher dimensions (M = 15 for MaF3), its performance is
overshadowed by the NSGA-III algorithm, indicating
possible limitations in scaling. In problems MaF4 to MaF6,
MaOMVO exhibits a mixed performance. While it shows
promising results in MaF4, especially in lower dimensions,
its efficiency diminishes in MaF5 and MaF®6 as the problem
complexity escalates. From Table 2, we can observe that
MaOMVO outperforms 32 out of 45 best results, whereas
MaOMFO, MaOPSO, NSGA-III and RVEA achieves 2, 0,
10 and 1 best results in terms of the GD values, respec-
tively. Despite these limitations, MaOMVO establishes
itself as a competitive algorithm, particularly in simpler
problem landscapes shown in Fig. 6. This analysis shows
the importance of algorithmic adaptability and scalability
in diverse optimization scenarios.

Table 3, data reveals that the proportions of test prob-
lems where MaOMVO, MaOMFO, MaOPSO, NSGA-III
and RVEA better among the 45 DTLZ test problems are
48.88%, 13.33%, 20%, % and 8.88%, highlighting its
effectiveness in maintaining a balance between
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Table 2 GD metric of various algorithms on MaF problems

Problem M D  MaOMVO MaOMFO MaOPSO NSGA-IIT RVEA
MaFl 5 14 3.4947¢ — 3 5.1185¢ — 3 5.9541e — 3 5.6249¢ — 3 6.7280e — 3
(4.88¢ — 4) = (6.70e — 4) = (8.29¢ — 4) = (14le — 4) = (1.03¢ — 3)
8 17 7.0493¢ — 3 1.2041e — 2 1.1552e — 2 1.8387e — 2 1.738% — 2
(247 — 4) = (8.64c — 4) = (5.99% — 4) = (4.50e — 3) = (7.08¢ — 3)
15 24 5.029¢ — 3 3.0512¢ — 2 3.1497¢ — 2 3.8056e — 2 1.3669% — 2
(8.07¢ — 4) = (147e — 3) = (3.48¢ — 3) = (3.64e — 3) = (8.31e — 3)
MaF2 5 14 1.1241le — 2 1.3412¢ — 2 1.2833¢ — 2 9.7805¢ — 3 1.4007e — 2
(3.97¢ — 4) = (1.15¢ — 4) = (4.19¢ — 4) = (159 — 4) = (4.30e — 4)
8 17 8.1944e — 3 1.3096¢ — 2 1.2143¢ — 2 1.3163¢ — 2 1.1820e — 2
(7.87¢ — 4) = (1.03¢ — 3) = (9.45¢ — 4) = (12le — 3) = (3.03¢ — 4)
15 24 1.7390e — 2 3.2674e — 2 3.1745¢ — 2 4.6386¢ — 2 3.3806e — 2
(9.77e — 4) = (3.96e — 4) = (1.15¢ — 3) = (6.67e — 3) = (157 — 3)
MaF3 5 14 11552 +5 2.2193¢ + 8 3.6805¢ + 7 9.0528¢ + 6 1.9668¢ + 5
(7.87e + 4) = (2.14e + 8) = (3.65¢ + 7) = (1.55¢ + 7) = (1.70e + 5)
8 17 3.7829% + 6 3.8498¢ + 9 1.0934e + 10 1.7992¢ + 8 1.085% + 12
(6.40¢ + 6) = (2.40e + 9) = (3.76¢ + 9) = (3.11e + 8) = (4.30e + 10)
15 24 28173¢ +2 1.4810e + 9 1.3863¢ + 9 2.2381¢ + 3 2.3141e + 12
(4.16e + 2) = (5.64¢ + 8) = (1.78¢ + 9) = (1.94e + 3) = (1.62e + 11)
MaF4 5 14  34717e + 1 6.5554e + 1 (4.82) =  2.6396e + 1 37814 + | 1.1909 + 2
(1.04e + 1) = (2.06e + 1) = (1.30e + 1) = (1.28¢ + 2)
8 17 12783 +2 27577e + 2 3.4087¢ + 2 2.6163¢ + 2 6.5127¢ + 2
(6.24e + 1) = (129 + 2) = (1.13¢ +2) = (547) = (4.05¢ + 2)
15 24  1.106le + 4 43414e + 4 2.0920e + 4 7.0253¢ + 4 7.3075¢ + 4
(1.79 + 3) = (.4le + 4) = (1.03¢ + 4) = (9.30¢ + 4) = (3.15¢ + 4)
MaF5 5 14 45255 —2 5.6319% — 2 5.1787e — 2 7.0912e — 2 1.6329¢ — 1
(3.05¢ — 3) = (2.16e — 3) = (4.60e — 3) = (8.07¢ — 3) = (5.33¢ — 2)
8 17 24567 — 1 12291 (125¢ — )= 11757 (1.10e — 1) = 1.2472 3.1519 + 1 (1.07)
(7.88¢ — 2) = (15le — 1) =
15 24 1.7385¢ + 1 1.5956e + 2 1.1703¢ + 2 6.8274e + 1 7.3411e + 3
(1.20e + 1) = (7.6le + 1) = (2.18¢ + 1) = (435¢ 4+ 1) = (1.43¢ + 2)
MaF6 5 14 2.0055¢ — 4 2.0380e — — 4 2.3885¢ — — 4 4.465le — 5 1.6966e — 4
(7.62¢ — 5) = (3.53¢ — 5) = (1.26¢-4) = (1.6le — 5) = (3.43¢ — 5)
8 17 16183 —4 5.2248 (9.05) = 5.3591 (9.28) = 1.4937¢ — 4 1.2943¢ + 1
(1.03¢ — 4) = (1.8% — 4) = (1.13e + 1)
15 24 1.9008e + 1 (5.83) = 1.9085¢ + 1 (4.52) =  1.4663¢ + 1 (1.22) = 7.9183¢ — 5 4.4581e + 1
(3.05¢ — 5) = (6.22¢ — 1)
MaF7 5 24 29822 —2 4.8692¢ — 2 5.0739% — 2 5.3791e — 2 4.6110e — 2
(1.01e — 2) = @2.11le — 2) = (1.77¢ = 2) = (2.10e — 2) = (1.05¢ — 2)
8 27 1.4866e — 1 3.0374e — 1 3.6394e — 1 2.8930e — 1 2.8872 (1.13¢ — 1)
(6.36e — 2) = (9.5le — 2) = (125¢ — 1) = (6.08¢ — 2) =
15 34  27139% — 1 1.0162 8.76e — 1) = 4.3340e — 1 2.6131e — 1 1.1104e + 1
(1.8% — 1) = (1.80e — 1) = (6.50e — 2) = (7.57¢ — 1)
MaF8 5 2  8510le —3 3.3626e — 2 7.9748¢ — 2 6.0318¢ — 2 2.8458¢ — 2
(6.19¢ — 3) = (6.58¢ — 3) = (4.0le — 2) = (8.58¢ — 2) = (1.67¢ — 2)
8 2 2558le—2 6.1294¢ — 2 3.1052¢ — 2 2.7371e — 1 1.7744¢ — 2
(1.77e — 2) = (5.33¢ — 2) = (2.52¢ — 2) = (438 — 1) = (5.41e — 3)
15 2 1.0702e — 2 3.3956e — 2 5.3441e — 2 2.5388¢ — 2 1.4069% — 1
(7.40¢ — 3) = (3.15¢ — 3) = (243¢ — 2) = (5.20e — 3) = (1.63¢ — 1)
MaF9 5 2 1.4395¢ + 1 1.2153 + 1 2.1572¢ + 1 1.0852¢ + 1 1.5699 + 1
(171e + 1) = (1.0le + 1) = (1.83¢ + 1) = (135¢ + 1) = (197 + 1)
8 2 14886(558c — )= 7.9699% + 1 2.2580e + 2 1.8096 2.4549¢ + 2
(4.02 + 1) = (1.12e + 2) = (372 — 1) = (1.53¢ + 2)
15 2 22157 (1.24) = 1.2168e + 2 9.5237¢ + 2 1.9462¢ + 1 4.8599% + 2
(9.70e + 1) = (1.57e + 3) = (7.50) = (9.7% + 1)

@ Springer



J. Inst. Eng. India Ser. C

Table 2 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA-III RVEA
MaFI0 5 14 1.076le — 1 1.0804e — 1 1.2747¢ — 1 1.2649% — 1 1.3926e — 1 (3.99-
(2.14e — 2) = (6.0le — 3) = (132¢ — 2) = (247e — 2) = 3)
8 17 1.6l16e—1 1.9556e — 1 1.8956e — 1 2.3489 — 1 (4.06e- 2.3896e — 1
(8.24e — 3) = (5.28¢ — 2) = (230 — 2) = 3) = (2.94¢ — 2)
15 24 1.8998¢ — 1 4.6083¢ — 1 3.8335¢ — 1 4.4215¢-1 3.8273¢ — 1
(4.73e — 2) = (547¢ — 2) = (5.66e — 2) = (4.80e — 2) = (3.61e — 2)
MaFll 5 14 24411e2 2.3366e — 2 2.880% — 2 (2.70e-  1.9613¢ — 2 1.2813¢ — 1
(5.28¢ — 3) = (2.54e — 3) = 3) = (2.75¢ — 3) = (1.21e — 2)
8 17 53659% — 2 (9.60e-  7.1052¢ — 2 8.4174e — 2 5.6767e — 2 3.0281e — 1
3) = (1.25¢ — 2) = (2.82¢ — 2) = (4.13¢ — 3) = (3.60e — 2)
15 24 13095 — 1 40269 — 1 4.1193¢ — 1 3.2592¢ — 1 1.1117 (2.36e — 1)
(1.08e — 2) = (6.08¢ — 2) = (9.62¢ — 2) = (1.15e — 1) =
MaF12 5 14 4.8817e —2 5.158% — 2 4.9288¢ — 2 5.1916e — 2 6.3018¢ — 2
(5.39¢ — 3) = (6.48¢ — 3) = (3.74e — 3) = (5.6le — 3) = (1.36¢ — 2)
8 17 21093 — 1 2.0547¢ — 1 2.3550e — 1 2.5239%¢ — 1 2.7544e — 1
(7.88¢ — 3) = (1.18¢ — 2) = (34le — 3) = (2.64e — 2) = (1.61e — 2)
15 24 23212 — 1 6.2255¢ — 1 5.0010e — 1 9.2885¢ — 1 9.6687¢ — 1
(5.70e — 2) = (3.08¢ — 2) = (3.26e — 2) = (1306 — 1) = (2.62¢ — 2)
MaF13 5 5 65708 — 1(1.00) = 1.5803e + 7 9.7198¢ + 5 3.1110e + 5 1.6740e + 7
(2.60e + 7) = (1.40e + 6) = (5.38¢ + 5) = (2.90e + 7)
8 5 56483 —2 9.6270e + 6 4.2415¢ + 7 3.8706e + 3 1.0133e + 5
(1.76e — 2) = (1.18¢ + 7) = (533¢ +7) = (4.90e + 3) = (1.74e + 5)
15 5  8.748% + 9 2.2562¢ + 8 6.6284e + 7 1.0652¢ — 1 3.5940e + 10
(1.52¢ + 10) = (1.22e + 8) = (8.83¢ +7) = (1.16e — 1) = (6.22¢ + 10)
MaF14 5 100 1.0417e + 3 2.2961e + 3 1.1066e + 3 5.1361e + 2 3.5794e + 3
(5.16¢ + 2) = (8.34e + 2) = (332 +2) = (5.00 + 2) = (5.09% + 3)
8 160 6.913% + 2 3.3300e + 3 3.7131e + 3 1.5506e + 2 7.4356e + 4
(1.20e + 3) = (1.55¢ + 3) = (2.35¢ + 3) = (1.38¢ + 2) = (8.32¢ + 4)
15 300 8.3985¢ + 1 1.9460e + 3 2.9943¢ + 3 3.8626¢ + 2 5.0646e + 4
(6.75¢ + 1) = (9.38¢ + 2) = (8.13¢ +2) = (4.16e + 2) = (1.12e + 4)
MaF15 5 100 1.1966e — 1 1.6655 (1.55) = 11179 (4.96e — 1) = 4.4226e — 1 1.1886e + 1 (1.09)
(3.6% — 2) = (5.14e — 1) =
8 160 3.4528¢ — 1 5.0913 (1.44) = 6.7042 (5.48¢ — 1) =  4.3660e — 1 2.8376e + 1 (3.75¢-
(232 — 2) = (8.50e — 2) = 1
15 300 1.6541 (2.55¢ — 1)= 3.5352¢ + 1 1.6472¢ + + 1 2.3472 6.8720e + 1 (4.97)
(2.25¢ + 1) = (8.45) = (6.38¢ — 1) =

convergence and diversity, crucial in many-objective
optimization. These percentages reveal that MaOMVO is
particularly adept in scenarios with lower dimensions, as
seen in problems like MaF1 and MaF2, where it outper-
forms other algorithms with a significant margin. However,
as the complexity and dimensionality of the problems
increase, as observed in MaF3, MaF14 and MaF15,
MaOMVO performance becomes more varied. This sug-
gests potential areas for enhancement, especially in high-
dimensional problem spaces. It important to note that while
MaOMVO exhibits competitive IGD values in problems
like MaF4 and MaF?5, it does not consistently outperform
NSGA-III and RVEA across all dimensions. This indicates
that for certain types of problem structures, these algo-
rithms might be better suited, particularly where a balance

of exploration and exploitation is critical. In lower-di-
mensional settings such as MaF6 and MaF7, MaOMVO
performance is exemplary, indicating its efficiency in
converging to optimal solutions. Conversely, in higher-di-
mensional problems (MaF8 to MaF10), its performance
shows variability, pointing towards a need for adaptive
mechanisms in the algorithm to maintain its efficacy in
complex scenarios. In Table 3, IGD value compared to
MaOMFO, MaOPSO, NSGA-III and RVEA, the proposed
MaOMVO is better in 39, 41, 36 and 41 out of 45 cases. To
summarize, MaOMVO establishes itself as a robust and
competitive algorithm in the majority of the test cases
shown in Fig. 6, especially in lower-dimensional problems.
Its performance in higher-dimensional and more complex
scenarios, however, indicates room for improvement. This
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Fig. 6 Best Pareto optimal front obtained by different algorithms on MaF problems

@ Springer



J. Inst. Eng. India Ser. C

%x10°  MaOMFO on MaF3 x10” MaOPSO on MaF3 %107 NSGA-III on MaF3 x10% RVEA on MaF3 %x10°  MaOMVO on MaF3
12
15
10 8 10
o 2 o A o
X L 2 £ Zs
= = = S0 =
° ° ° ° °
Z z z z Z 6
8 g4 8 8 8
= = = = =
S ) S S5 S
2
2
0
2 3 4 5 1 2 3 4 5 1 2 3 4 5
Objective No. Objective No. Objective No. Objective No. Objective No.
%x10°  MaOMFO on MaF3 %10'"  MaOPSO on MaF3 x10""  NSGA-III on MaF3 Lo 10° RVEA on MaF3 x10'">  MaOMVO on MaF3
N\ 4
12
15
o o o3 o 10 )
2 2 2 2 2
= = =S E s
o o 10! o o o
2z Z R = Z
5 3 3 3 6 3
o = 2 2 2
by = = = &
c I ] S 4 ]
1
\ 2
| ~_ 4
0 0
T2 3 4 5 6 1 8 T2 3 4 5 6 T2 3 4 5 6 7 8
Objective No. Objective No. Objective No. Objective No. Objective No.
MaOMFO on MaF3 «10'"  MaOPSO on MaF3 x10” NSGA-III on MaF3 x10* RVEA on MaF3 %10 MaOMVO on MaF3
5 2
300
3 4
o 250 025 o 4 o 2 1.5
2 2 2 2 2
= 200 2 EE s3 =
° ° ° ° °
z z 2 Z N
£ 150 s 3 5, 5
2 2 22 2 2
& = = i i
S 100 S s} S (S]
1 1 0.5
50 05
< 0
2 4 6 8 10 12 14 2 4 6 8 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 8 10 12 14
Objective No. Objective No. Objective No. Objective No. Objective No.
MaOMFO on MaF4 MaOPSO on MaF4 NSGA-III on MaF4 RVEA on MaF4 MaOMVO on MaF4
100 15000
300
1400 800 2000
= )
= 1000 s 1500 =200
° o o
£ s00 £ £
3 g 400 1000, g 150
= = =
&g 600 3 8100 5000
400 200 500
200 50
1 2 3 4 5 1 2 3 4 s
Objective No. Objective No. Objective No. Objective No. Objective No.
MaOMFO on MaF4 MaOPSO on MaF4 NSGA-III on MaF4 RVEA on MaF4 MaOMVO on MaF4
3000 4000/
3000 4000
1500) / 2500
2 2500 s 000 s 1 o 3000
= = = 2000 =
= 2000 = = =
o /s 1000 1o °
£ 1500 2 2000 £ 1500 £2000
2 2 2 2
3 1000 13 500 3 1000 3
§ 1000 1000
500 500
\ 0!
1 2 4 4 1 1 4
Objective No. Objective No. Objective No. Objective No. Objective No.
«10° _MaOMFO on MaF4 «10°  MaOPSO on MaF4 «10°  NSGA-III on MaF4 %10° RVEA on MaF4 «10° _MaOMVO on MaF4
12
5 35
4
3 8 10}
2.5 2,5 ] N EN
B Bl S0 B =
° ° 2 ° ° °
z z z Z 6 z
g ! 815 84 2 82
= B = oy =
S 5, S S S
05 2 1
05 2
2 4 6 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Objective No. Objective No. Objective No. Objective No. Objective No.
MaOMFO on MaF5 MaOPSO on MaF5 NSGA-III on MaF5 RVEA on MaF5 MaOMVO on MaF5
30 30
25 25
2 9 2 3 9
k] 2 EB\ \ 2 El
= s R k ! = E
o o v (N o 0
Z H RN 2 H
3 5 g \ \ 3 5
2 2 2 AR 2 2
i = NN & =
o o S 10NN ot ©
N
S
=

3
Objective No. Objective No. Objective No. Objective No.

Fig. 6 continued
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Fig. 6 continued

analysis is crucial for guiding future developments and
applications of MaOMVO in many-objective optimization
tasks.

Analyzing the Spacing (SP) metric results from Table 4,
SP value compared to MaOMFO, MaOPSO, NSGA-III and
RVEA, the proposed MaOMVO worse in 1, 3, 9 and 11 out
of 45 cases. In problems like MaF1 and MaF2, MaOMVO
distinctly outperforms its counterparts, especially in lower-
dimensional setups, indicating its proficiency in evenly
distributing solutions in simpler search spaces. However, as
we move to more complex problems like MaF3 and higher
dimensions, MaOMVO dominance wanes, suggesting areas
where the algorithm could be enhanced for better perfor-
mance. It is notable that in certain challenges, such as
MaF4 and MaF5, where diversity and distribution of
solutions are critical, MaOMVO does not always secure the
lowest SP values. This implies that while MaOMVO is
generally effective, there is potential for improvement in
maintaining solution diversity across the Pareto front
shown in Fig. 6.

In Table 5 MaOMVO achieves the best SD results in
25/45 test problems. This impressive performance of
MaOMVO shows its effectiveness in maintaining a diverse

@ Springer

Objective No.

8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Objective No. Objective No.

spread of solutions across the Pareto front. MaOMVO
particularly excels in problems like MaF1, MaF2 and
MaF4, especially in environments with lower dimensions,
indicating its proficiency in evenly distributing solutions in
simpler problem spaces. It is notable that in certain chal-
lenges, such as MaF5 and MaF6, where maintaining a
diverse solution set is crucial, MaOMVO does not con-
sistently record the lowest SD values. This suggests that
while MaOMVO is generally effective, there is room for
improvement in its diversity maintenance across the Pareto
front shown in Fig. 6.

Table 6, which presents the HV values are given in
mean (standard deviation) format, with a higher mean
indicating better performance. Based on the data from
Table 6, on the HV values, when respectively compared to
MaOMFO, MaOPSO, NSGA-III and RVEA, the proposed
MaOMVO is better in 37, 36, 42 and 43 out of 45 cases and
is only worse in 17.77%, 20.0%, 6.66% and 4.44% cases.
outstanding performance highlights its effectiveness in not
only covering a larger area of the Pareto front but also in
maintaining a good balance between convergence and
diversity. MaOMVO demonstrates significant effectiveness
in problems like MaF1, MaF2 and MaF5, especially in
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Table 3 IGD metric of various algorithms on MaF problems

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — TII RVEA
MaFl 5 14 1.5534e — 1 2.2576e — 1 2.3088e — 1 1.5388¢ — 1 1.5700e — 1
(2.19¢ — 3) = (1.25¢ — 2) = (2.0de — 2) = (6.28¢ — 3) = (1.97¢ — 3)
8 17 2.6415¢ — 1 3.0601e — 1 3.0648e — 1 3.7495¢ — 1 2.9601e — 1
(9.97¢ — 4) = (6.58¢ — 3) = (3.8le — 3) = (2.75¢ — 2) = (1.25¢ — 2)
15 24 4391le — 1 4.0507¢ — 1 4.1005¢ — 1 4.9751e — 1 5.6837¢ — 1
(43le — 3) = (2.00e — 2) = (6.20e — 3) = (292 — 2) = (8.11e — 3)
MaF2 5 14  1.2055e — 1 1.3693¢ — 1 1.4112¢ — 1 1.0542¢ — 1 1.3281e — 1
(2.74e — 3) = (1.266 — 3) = (6.07¢ — 3) = (8.87¢ — 4) = (2.12¢ — 3)
8 17 1.9291e — 1 2.4230e — 1 24811e — 1 27309 — 1 1.8404e — 1
(2.17e — 3) = (2.07e — 2) = (237 — 2) = (4.6le —2) = (3.33¢ — 3)
15 24 35817 — 1 3.6514e — 1 3.6118e — 1 54185¢ — 1 3.2797¢ — 1
(7.46e — 3) = (1.84e — 2) = (5.14e — 2) = (5.71e — 2) = (5.14e — 2)
MaF3 5 14 59lle+2 1.1081e + 3 6.65%4¢ + 2 4.2400e + 2 3.1572% + 5
(4.16e + 2) = (5.06e + 2) = (6.78¢ + 2) = (337e +2) = (2.45¢ + 5)
8 17 2.6936e +2 1.6696e + 3 4.8518¢ + 3 1.1680e + 3 1.6154e + 12
(1.08¢ + 2) = (1.16e + 2) = (3.18¢ + 3) = (2.52¢ +2) = (3.88¢ + 11)
15 24  8.0750¢ + 2 2.2946e + 2 9.4065¢ + 2 2.8031e + 2 2.2684e + 12
(8.85¢ + 2) = (227e +2) = (3.11e +2) = (3.09 + 2) = (8.72e + 11)
MaF4 5 14 17509 + 2 2.3935¢ + 2 9.4429 + 1 1.7562¢ + 2 1.5676e + 2
(7.40e + 1) = (2.86e + 1) = (7.20e + 1) = (7.0le 4+ 1) = (4.05¢ + 1)
8 17 7.165% +2 8.8956¢ + 2 1.7596e + 3 9.7271e + 2 1.1053e + 3
(4.15¢ + 2) = (4.0% + 2) = (6.87¢ + 2) = (2.05¢ +2) = (4.79% + 2)
15 24  6.9566¢ + 4 1.7922¢ + 5 8.9903¢ + 4 2.118% + 5 1.7002¢ + 5
(1.15¢ + 4) = (9.86¢ + 4) = (4.96¢ + 4) = (2.90e + 5) = (8.86€ + 4)
MaF5 5 14 24070 (1.15e — 2) = 2.4837 (4.90e — 2) = 4.1706 (1.87) = 2.6998 (6.81e — 2) =  2.6276 (1.18¢ — 1)
8 17 3.6343¢ +1(345) = 2.1187e +1(1.28) = 2.3596e + | 27732 + 1 (2.17) = 6.8750e + 1 (9.77)
(7.79% — 1) =
15 24  5.1645¢ + 3 3.8992¢ + 3 4.4812¢ + 3 6.4331e + 3 8.8164e + 3
(7.10e + 2) = (7.46€ + 2) = (5.74e + 1) = (4.72¢ +2) = (4.54e + 3)
MaF6 5 14  62679% — 3 1.7707e — 2 5.1803¢ — 2 2.7108e — 2 54011e — 3
(3.72¢ — 4) = (221le — 3) = (3.40e — 2) = (4.21e — 3) = (2.00e — 4)
8 17 67195 — 3 9.1316e — 1 (1.54) = 7.1726e — 1 (1.19) = 2.7913¢ — 1 4.0224 (4.21)
(4.54¢ — 4) = (397e — 1) =
15 24 7.0787e — 1 8.9271e — 1 4.6249 (4.69) = 2.2251e — 1 1.8863¢ + 2
(3.17e — 1) = (152 — 1) = (257 — 1) = (5.93¢ + 1)
MaF7 5 24 3.8223e — 1 4.8248¢ — 1 4.759%4e — 1 5.7186e — 1 3.9513¢ — 1
(2.87¢ — 2) = (6.05¢ — 2) = (3.79% — 2) = (6.59 — 2) = (3.35¢ — 2)
8 27 12116 (2.07e — 1)= 2.9929 (1.12) = 3.8378 (8.8le — 1) =  2.4259 (2.20e — 1) =  3.4190 (1.47)
15 34 3.8432 (1.65) = 1.3855¢ + 1 (4.99) =  8.6702 (1.03) = 6.0374 (3.41) = 1.7838¢ + 1 (6.53)
MaF8 5 2 2.7477e — 1 6.0001e — 1 8.6332¢ — 1 12674 3.92¢ — 1) = 7.2723¢ — 1
(8.09¢ — 2) = (145¢ — 1) = (4.09 — 1) = (2.54e — 1)
8 2 1.0634(725e — 1)= 12524 (6.80e — 1)= 6.4564e — 1 17365 (5.82¢ — 1) = 5.3948¢ — 1
(2.56e — 1) = (3.29¢ — 1)
15 2 5795le — 1 9.0152¢ — 1 7.4344e — 1 2.3411 (4.00e — 1) = 1.0938 (8.98¢ — 1)
(8.32¢ — 2) = (1.0le — 1) = (8.10e — 2) =
MaF9 5 2 93434e — | 4.1290e — 1 4.2747e — 1 3.8645¢ — 1 9.4786e — 1
(4.76e — 1) = (1.05¢ — 1) = (1.74e — 1) = (8.84e — 2) = (5.17¢ — 2)
8 2.7152 (1.06) = 40146 (5.19¢ — 1) = 2.6450 (1.81) = 1.6235 (1.40) = 4.9373 (7.15¢ — 1)
15 8.8610 (6.66) = 1.0840e + 1 (9.06) = 9.8818 (8.06) = 9.0310 (6.48) = 2.1738e + 1 (7.75)
MaF10 5 14 1.1882(1.62e — 1) = 1.0982 (1.25¢ — 2)= 1.2707 (9.40e — 2) = 12574 (1.70e — 1) = 1.3692 (3.93¢ — 2)
8 17 1.8727(7.62e —2)= 19387 (338¢ — 1)= 1.9292 (1.15¢ — 1) = 2.1374 (3.18¢ — 2) = 2.2974 (1.18¢ — 1)
15 24 27445 (1.18¢ — 1)= 24714 (1.58¢ — 1) = 25225 (4.40c — 2) = 2.8981 (6.49%¢ — 2) = 5.5673 (1.43)
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Table 3 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — IIl RVEA
MaFll 5 14 50123 — 1 5.1203¢ — 1 5.0085¢ — 1 5.1034e — 1 8.3152¢ — 1
(4.0le — 3) = (132¢ — 2) = (1.26e — 2) = (1.73¢ — 2) = (477 — 2)
8 17 10979 (399 —2)= 1.2210(3.08¢ —2) = 1.1371 (1.60e — 2) = 1.1420 (4.53e — 2) = 2.4125 (7.47¢ — 2)
15 24  2.1662 (1.54e — 1) = 2.6322 (249 — 1) = 2.6919 (1.32¢ — 1) = 3.5917 (2.09) = 3.8881 (4.30e — 1)
MaF12 5 14 12361 (2.88¢ —2)= 12611 (1.15¢ —2)= 12123 (9.62¢ — 3) = 12625 (3.97e — 2) = 1.2702 (6.75¢ — 2)
8 17 3.6135(593e —2)= 3.6067 (1.38¢ — 1) = 3.5932 (2.0le — 2) = 3.7740 (8.97¢ — 2) = 3.8481 (1.83¢ — 1)
15 24 1.116% + 1 1.1162e + 1 1.1449% + 1 1.0354e + 1 12219 + 1
(2.72¢ — 1) = (3.35¢ — 1) = (1.76e — 1) = (5366 — 1) = (1.33¢ — 1)
MaF13 5 5  1.8474e — 1 2.8618¢ — 1 27073 — 1 9.9764e — 1 2.4983¢ — 1
(2.48¢ — 2) = (4.84¢ — 2) = (4.58 — 2) = (534 — 1) = (5.50e — 2)
8 5 23794e — 1 3.7923¢ — 1 4.1281e — 1 6.4169¢ — 1 3.5870¢ — 1
(2.07e — 2) = (4.0% — 2) = (5.78¢ — 2) = (137 — 1) = (2.07e — 1)
15 5  3.9206e — 1 9.0408¢ — 1 7.5238¢ — 1 1.0626 2.17e — 1) = 1.4015 (4.66c — 1)
(3.84e — 2) = (237 — 1) = (9.0le — 2) =
MaFl4 5 100 32676 (7.72¢ — 1) = 1.1794e + 1 (4.43) = 1.2407e + 1 (1.93) = 54611 (2.12) = 2.1076e + 1 (5.66)
8 160 3.0910 (8.62e — 1) = 6.3331e + 1 3.154% + 1 9.2351 (5.56) = 27111e + 4
(8.36e + 1) = (1.68¢ + 1) = (149 + 4)
15 300 6.7077 (1.66) = 2.1193¢ + 1 (943) =  1.0267¢ + 1 (7.56) =  9.6281 (2.87) = 4.2364e + 4
(2.67¢ + 4)
MaF15 5 100 1.2968 (1.63c — 1) = 3.3710 (7.99¢ — 1) = 3.3600 (4.62¢ — 1) = 1.6783 (5.05¢ — 1) =  2.5562¢ + 1 (5.86)
160 3.2458 (6.10e — 2) =  8.4394 (1.08) = 1.0451e + 1 (3.25) =  2.9639 (444e — 1) =  9.3629¢ + 1
(143e + 1)
15 300 1.5437e + 1 (241) = 5.6742 + 1 45220e +1(9.49) = 1.016% + 1 (3.51) = 1.0212 + 2
(121e + 1) = (1.94e + 1)

lower-dimensional settings, where it excels in covering a
larger area of the Pareto front. However, in more complex
problems like MaF3 and higher dimensions, the effec-
tiveness of MaOMVO becomes less pronounced, pointing
out potential areas for improvement. It noteworthy that in
challenges like MaF4 and MaF6, where a broader Pareto
front coverage is crucial, MaOMVO does not consistently
achieve the highest HV values. This indicates that while
MaOMVO is generally effective, there is a potential for
improvement in its ability to cover a more extensive area of
the Pareto front shown in Fig. 6, especially in complex
problem spaces.

Table 7, which presents the runtime (RT) metric results
for MaOMVO and other algorithms across various many-
objective optimization problems, provides insights into the
computational efficiency of these algorithms. In Table 7,
RT value compared to MaOMFO, MaOPSO, NSGA-III
and RVEA, the proposed MaOMVO is better in 44, 40, 32
and 42 out of 45 cases. The shorter running time of
MaOMVO does not come at the cost of performance
degradation. Instead, it indicates higher search efficiency,
enabling MaOMVO to reach satisfactory solutions faster
than its counterparts. Thus, the experimental results from
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Table 7 clearly illustrate that MaOMVO not only excels in
running speed but also maintains high efficiency in prob-
lem-solving. Its ability to perform computations faster than
other algorithms like MaOMFO, MaOPSO, NSGA-III and
RVEA, without compromising on the quality of the solu-
tions, is a testament to its robustness and suitability for
scenarios where time efficiency is important.

Experimental Results on RWMaOP Problems

Analyzing the Spacing (SP) metric from Table 8§ for
MaOMVO across a range of real-world many-objective
optimization problems (RWMaOPs), we gain insights into
the algorithm performance in terms of solution distribution
uniformity. In RWMaOP1, MaOMVO shows a mean SP
value of 1.1789 (SD: 0.186), which is significantly lower
than those of MaOMFO, MaOPSO, NSGA-III and RVEA.
This indicates MaOMVO superior ability in evenly
spreading out solutions, particularly in the context of car
cab design. MaOMVO records a mean SP value of 10,625
(SD: 8,470), which is higher compared to other algorithms.
Despite this, MaOMVO performance in this engineering
problem suggests a need for improvement in maintaining
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Table 4 SP metric of various algorithms on MaF problems

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — TII RVEA
MaFl 5 14 45452 —2 1.3403¢ — 1 1.0514e — 1 8.7241e — 2 1.8742¢ — 1
(539 — 3) (2.78¢ — 2) = (9.29¢ — 3) = (5.88¢ — 3) = (1.24e — 2) =
8 17 9.0376e — 2 1.2597e — 1 1.2140e — 1 9.7680e — 2 2.8171e — 1
(4.22¢ — 2) (8.35¢ — 3) = (8.88¢ — 3) = (1.25¢ — 2) = (3.77¢ — 3) =
15 24 7.7106e — 2 1.5690¢ — 1 1.3265¢ — 1 9.0669¢ — 2 4.1910e — 1
(2.96e — 2) (8.88¢ — 3) = (2.71e — 2) = (5.52¢ — 2) = (3.13¢ — 2) =
MaF2 5 14  1.4435¢ — 1 1.2076e — 1 1.2005¢ — 1 47415¢ — 2 3.8591e — 2
(6.16e — 3) = (9.32¢ — 3) = (6.38¢ — 3) = (6.66e — 3) = (2.90e — 3)
8 17 21602 — 1 1.4798¢ — 1 1.3979% — 1 5.4290e — 2 6.0302¢ — 2
(591e — 3) = (272 — 2) = (1.05¢ — 2) = (1.82¢ — 3) = (1.77¢ — 3)
15 24 2.59le— 1 2.3614e — 1 2.1623¢ — 1 6.9475¢ — 2 1.0069% — 1
(453 — 2) = (2.92¢ — 2) = (8.28¢ — 2) = (2.00e — 2) = (1.18¢ — 2)
MaF3 5 14 6.8156e + 5 1.8497¢ + 9 3.3098¢ + 8 7.1190e + 7 4.5758¢ + 5
(4.89% + 5) = (2.10e + 9) = (3.45¢ + 8) = (1.22¢ + 8) = (2.08¢ + 5)
8 17 54208 +7 2.6805¢ + 10 6.5347¢ + 10 1.6971e + 9 6.8132¢ + 11
(9.19% + 7) = (1.99¢ + 10) = (1.46¢ + 10) = (2.94e + 9) = (1.08¢ + 10)
15 24 1.970le + 2 6.3745¢ + 9 7.2277e + 9 59119 + 3 1.3785¢ + 12
(3.34e + 2) = (351e + 9) = (I.11e + 10) = (6.06e + 3) = (151e + 11)
MaF4 5 14 24839 + 1 (874)= 3.144le + 2 12517 + 2 9.0590e + 1 6.2148¢ + 2
(3.38¢ +2) = (1.84e + 2) = (872 + 1) = (1.00e + 3)
8 17 1388le +2 1.6415¢ + 3 2.2090e + 2 1.7623e + 2 4.2250e + 3
(2.5% + 1) = (2.63¢ + 3) = (6.40¢ + 1) = (791e + 1) = (5.21e + 3)
15 24  1.8410e + 4 1.8610e + 4 1.0968e + 4 2.7470e + 4 6.4636¢ + 4
(1.66e + 3) = (9.26e + 3) = (5.16e + 3) = (3.80e + 4) = (4.03e + 4)
MaF5 5 14 21150 (342 — 2)=  1.6936 (8.35¢ —2) =  1.6626 (1.95¢ — 1) =  1.6427 8.218% — 1
(5.64¢ — 1) = (1.71e — 1)
8 17 13877e +1(4.19)= 1.723% + 1 (2.74) =  1.3268e + 1 (1.46) =  2.3256¢ + 1 2.2995¢ + 1 (3.17)
(5.57) =
15 24 3.8246¢ + 3 1.6049% + 3 1.6505¢ + 3 1.3041e + 3 3.6929% + 3
(1.04e + 2) = (1.00e + 3) = (2.69% + 2) = (1.87¢ + 3) = (9.77¢ + 2)
MaF6 5 14 1.6683¢ — 2 2.5148¢ — 2 3.9265¢ — 2 52268 — 2 8.7610e — 3
(8.12¢ — 4) = (7.30e — 3) = (2.27e — 2) = (6.90¢ — 3) = (197 — 3)
8 17 2.128le—2 1.2784 (2.17) = 1.0471 (1.78) = 7.7244e — 2 8.4113 (7.69)
(1.87e — 4) = (6.71e — 2) =
15 24 14720 + 1 (9.23)= 2.1868¢ + 1 (1.95) =  1.4953¢ + 1 (8.34) =  2.1042¢ — 1 3.8465¢ + 1
(147¢ — 1) = (1.08e + 1)
MaF7 5 24 3.356le — 1 3.2066e — 1 32120e — 1 1.8742¢ — 1 1.3599% — 1
(191e — 2) = (2.15¢ — 2) = (140 — 2) = (3.266 — 2) = (8.82¢ — 3)
8 27 2676le—1 4.9785¢ — 1 6.0151e — 1 6.7243¢ — 1 5.8393¢ — 1
(4.34e — 2) = (7.16e — 2) = (238 — 1) = (337e — 2) = 4.0le — 2)
15 34  3.950le — 1 1.0764 (6.07e — 1) =  1.4430 (7.22¢ — 1) = 3.7966 (2.98) = 8.3133¢ — 1
(1.25¢ — 1) = (1.77¢ — 1)
MaF§ 5 2 1.5566e — 1 2.0285¢ — 1 4.5984¢ — 1 NaN (NaN) 6.3272¢ — 2
(243¢ — 2) = (1.67¢ — 1) = (353 — 1) = (3.36e — 2)
8 2 51317e—1 4.8830¢ — 1 2.7090e — 1 NaN (NaN) 2.9280e — 1
(5.08¢ — 1) = (4.12¢ — 1) = (1.10e — 1) = (1.19% — 1)
15 2 6.6034e — 1 1.0067 (5.97¢ — 1) =  1.2015 (6.66e — 1) =  NaN (NaN) 1.9459 (2.68)
(3.9% — 1) =
MaF9 5 2 22667¢ +2 1.8235¢ + 2 2.0176e + 2 9.6315¢ + 1 2.3418¢ + 2
(371e +2) = (1.59% +2) = (3.38¢ + 2) = (1.28¢ + 2) = (3.20e + 2)
8 2 55901 (3.32) = 2.7813e + 2 4.7293¢ + 1 5.4567 (3.21) = 1.5929¢ + 3
(3.45¢ + 2) = (7.60e + 1) = (176 + 3)
15 2 3.5398e + 1 1.0135¢ + 3 3.2987¢ + 2 45143 + 1 2.7891e + 3
(335¢ + 1) = (1.66e + 3) = (145e + 2) = (1.15e + 1) = (1.30e + 3)
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Table 4 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — III RVEA
MaF10 5 14 9.5284e — 1 8.2585¢ — 1 9.1536e — 1 7.6450e — 1 5.0247e — 1
(1.16e — 1) = (4.56e — 2) = (1.17e — 1) = (1.0le — 1) = (9.29¢ — 2)
8 17 20454 (35le— 1)= 17221 (875¢ —2)= 17378 (1.10e — 1) =  1.8412 9.7994e — 1
(4.0le — 2) = (1.43¢ — 1)
15 24 50812 (947 — 1)=  3.9727 (2.54) = 53134 (522¢ — )= 6.0111 2.9594 (3.85¢ — 1)
(8.34e — 1) =
MaFll 5 14 6.9225¢ — 1 4.5365¢ — 1 6.0264e — 1 3.2298¢ — 1 3.7896e — 1
(148¢ — 1) = (1.07e — 1) = (1.90¢ — 2) = (4.88¢ — 2) = (9.62¢ — 2)
8 17 93316e — 1 1.0582 (3.48¢ — 1) = 1.4183 (2.44e — 1) =  9.0802¢ — 1 7.9646e — 1
(3.36e — 1) = (3.64e — 1) = (2.10e — 1)
15 24 20414 (926e — 1) = 14209 (6.63¢ — 1) =  1.8395 (6.17e — 1) =  2.1776 2.0226 (2.67¢ — 1)
(7.09 — 1) =
MaF12 5 14 42173 — 1 8.5358¢ — 1 8.2629¢ — 1 7.8075¢ — 1 1.2261
(1.24e — 2) (8.66¢ — 2) = (7.13¢ — 2) = (3.10e — 2) = (152 — 2) =
8 17 11225 (2.40e — 1) 1.9101 (1.05e — 1) = 2.1981 (3.84e — 1) =  2.5357 2.4661
(198 — 1) = (2.05¢ — 1) =
15 24 3.8013 (3.45¢ — 1) 9.4081 (1.88) = 72273 (1.15) = 7.4482 (2.81) = 9.8442 (1.98) =
MaF13 5 5  3.5835(4.98) = 3.1069¢ + 7 9.3478¢ + 6 1.0777¢ + 6 7.2055¢ + 6
(3.73e + 7) = (127e + 7) = (1.86€ + 6) = (1.24e + 7)
8 5 80928 — 1 1.4345¢ + 8 14919 + 8 2.6118¢ + 4 1.6506¢ + 6
(5.38¢ — 1) = (159 + 8) = (1.59 + 8) = (327 + 4) = (2.83¢ + 6)
15 5  3.0307e + 11 3.2078¢ + 9 1.1461e + 9 1.0157 (1.58) = 2.9041e + 10
(5.25¢ + 11) = (249 + 9) = (149 + 9) = (5.03¢ + 10)
MaFl4 5 100 5.4378¢ + 3 2.0018¢ + 3 1.0574e + 3 7.9000e + 2 73519 + 2
(4.91e + 3) = (6.54e + 2) = (4.24e + 2) = (4.22¢ + 2) = (9.97¢ + 2)
8 160 7.3536e + 2 1.2282¢ + 4 9.8889€ + 3 3.2303¢ + 3 1.9086e + 4
(6.66¢ + 2) = (134e + 4) = (9.71e + 3) = (5.5% + 3) = (1.22e + 4)
15 300 4.4284c + 2 4.8657¢ + 3 5.4068¢ + 3 5.1558¢ + 2 1.3883¢ + 4
(6.23¢ + 2) = (2.22¢ + 3) = (2.73¢ + 3) = (8.67¢ + 2) = (9.18¢ + 3)
MaF15 5 100 5.6535¢ — 1 12913 (5.32¢ — 1) = 4.3471 (4.99) = 2.6703¢ — 1 6.0782 (4.79¢ — 1)
(6.89 — 1) = (1.07e — 1) =
8 160 3.2682¢ — 1 6.7429 (3.28) = 7.2824 (4.28) = 5.968% — 1 2.2504e + 1 (1.31)
(1.73¢ — 2) = (13le — 1) =
15 300 6.0997¢ — 1 4.0832¢ + 1 12779 + 1 (727) = 8.4165¢ — 1 5.3196¢ + 1 (7.82)
(4.50e — 2) = (3.02¢ + 1) = (6.68¢ — 2) =

uniform solution distribution for large-scale structural
designs. With a mean SP value of 16.218 (SD: 2.60),
MaOMVO demonstrates better performance than
MaOMFO and MaOPSO, but it is outperformed by NSGA-
IIT and RVEA. This result suggests MaOMVO intermediate
capability in generating uniformly distributed solutions in
the context of material science optimization. MaOMVO
has a mean SP value of 58,271 (SD: 9,550), indicating its
weaker performance in this domain. This high SP value
suggests a concentration of solutions, which is less desir-
able for complex engineering problems like antenna
design. In this problem, MaOMVO achieves a mean SP
value of 0.04318 (SD: 0.00377), In Table 8, SP value
compared to MaOMFO, MaOPSO, NSGA-IIT and RVEA,
the proposed MaOMVO is better in 5, 5, 4 and 4 out of 5
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cases showcasing its excellent performance with the most
uniform solution distribution among all compared algo-
rithms shown in Fig. 7.

From Table 9, In RWMaOP1, HV of 2.1753e-3 (SD:
1.60e-4), outperforming MaOMFO, MaOPSO, NSGA-III
and RVEA. This indicates its superior ability to cover a
larger area of the Pareto front with diverse solutions. In
RWMaOP2, HV of 8.1461e-2 (SD: 5.40e-4), MaOMVO
shows better performance than most of its competitors,
except RVEA. In RWMaOP3, MaOMVO records an HV of
1.588%-2 (SD: 5.94e-4), indicating competitive perfor-
mance but slightly outperformed by MaOMFO and
MaOPSO. It suggests MaOMVO capacity to generate a
comprehensive set of solutions is on par with these algo-
rithms. In RWMaOP4, MaOMVO HV value of 5.4170e-1
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Table 5 SD metric of various algorithms on MaF problems

Problem M D MaOMVO MaOMFO MaOPSO NSGA — III RVEA
MaF1 5 14 9.0793e — 1 7.9451e — 1 6.9819% — 1 3.3243e — 1 6.5618¢ — 2
(1.02e — 1) = (145 — 1) = (824e — 2) = (1.22e — 2) = (5.24e — 3)
8 17 1.0261 (3.74e — 2) = 7.6846e — 1 7.8428¢ — 1 7.6572¢ — 1 8.8549¢ — 2
(9.03e — 2) = (2.62e — 2) = (3.37e — 2) = (6.07e — 2)
15 24 1.8019 (4.63e — 2) = 1.0032 (1.65¢ — 2) = 9.8903¢ — 1 1.0144 (5.47e — 2) = 8.6430e — 2
(6.13¢e — 3) = 5.17e — 2)
MaF2 5 14 6.1541e — 1 7.6957¢ — 1 8.1270e — 1 1.6082¢ — 1 1.1757e — 1
(5.30e — 2) = (3.28¢ — 2) = (7.99¢ — 2) = (1.15¢ — 2) = (8.72e — 3)
8 17 11029 — 1 7.8307e — 1 7.7945¢ — 1 2.7393¢ — 1 8.2081e — 1
(4.18e — 3) (5.30e — 2) = (7.0le — 3) = (5.07e — 2) = (4.28e — 2) =
15 24 48174e — 1 1.0244 (2.10e — 2) = 9.6649¢ — 1 9.3206e — 1 1.3163 (9.77e — 2) =
(4.43e — 2) (7.37e — 2) = (5.30e — 2) =
MaF3 5 14 1.2959 (1.85¢ — 1) 2.0316 (6.49¢ — 2) = 1.8757 (3.26e — 1) = 1.7727 (4.03e — 1) = 1.3524 (3.74e — 2) =
8 17 2.3330e — 1 1.8251 (1.10e — 1) = 1.7462 (4.65¢ — 2) = 19378 (2.67e — 1) = 2.0207 (1.0le — 1) =
(1.66e — 2)
15 24 5.8510e — 1 3.2696 (1.03¢e — 1) = 3.2699 (1.42e — 1) = 2.8050 (2.14) = 1.0782 (1.09¢ — 1) =
(121e — 2)
MaF4 5 14 8.278% — 1 9.4880e — 1 8.3778¢ — 1 5.1713¢e — 1 7.4830e — 1
(9.19¢ — 2) = (3.57e — 1) = (3.38e — 1) = (2.79¢ — 2) = (7.12e — 1)
8 17 8.8152e — 1 1.1746 (5.85¢ — 1) = 8.2768e — 1 6.5854e — 1 8.1388e — 1
(3.92e — 2) = (5.02e — 2) = (6.41e — 2) = (4.56e — 1)
15 24 1.0542 (5.80e —2)= 1.0139(1.68e —2) = 1.0382(5.03¢ — 3) = 1.0169 (2.24e —2) = 7.9913e — 1
(7.03e — 2)
MaF5 5 14 5.6048¢e — 1 3.9095¢ — 1 7.8149% — 1 3.6797¢ — 1 1.1897¢ — 1
(1.22e — 2) = (1.57e — 2) = (3.73e — 1) = (3.78¢ — 2) = (8.37e — 3)
8 17 1.4428e — 1 6.1694e — 1 5.9359% — 1 1.0188 (1.33¢e — 1) = 1.3920 (4.70e — 2) =
(3.27e — 2) (2.07e — 2) = (6.17e — 2) =
15 24  3.2657e — 1 14353 (1.59¢ — 1) = 1.7022 (7.28¢ — 2) = 1.0982 (1.24e — 1) = 2.0633 (8.38¢ — 2) =
(1.34e — 1)
MaF6 5 14 1.6483e — 1 1.0912 (3.89¢ — 2) = 1.1660 (1.91e — 1) = 5.2541e — 1 7.8770e — 1
(2.14e — 2) (8.0de — 2) = (5.17e — 2) =
8 17 22432 — 1 1.0652 (1.56e — 1) = 9.6106e — 1 1.3450 (4.50e — 1) = 1.1022 (7.86e — 2) =
(6.63¢ — 2) (179 — 1) =
15 24  6.2616e — 1 19222 (1.53e — 1) = 13469 (2.08¢ — 1) =  1.9289 (1.20) = 1.7516 (3.79¢ — 1) =
(1.08e — 1)
MaF7 5 24 1.5433e — 1 5.7568e — 1 5.0472¢ — 1 3.7720e — 1 6.6889% — 1
(2.88¢ — 2) (6.33e — 2) = (4.83¢ — 2) = (8.90e — 2) = (1.1le — 2) =
8 27 1.9902¢ — 1 5.5618¢ — 1 5.7996e — 1 4.2822¢ — 1 9.8820e — 1
(331le — 2) (8.11e — 2) = (227e — 2) = (3.57e — 2) = (2.90e — 2) =
15 34 7.5338e — 1 1.0709 (5.79¢ — 2) = 1.1943 (1.59e¢ — 1) = 8.8133e — 1 1.1487 (8.69¢ — 2) =
(1.31e — 1) (3.58¢ — 2) =
MaF8 5 2 9.3900e — 1 1.2306 (1.83e — 1) = 1.2160 (1.71e — 1) = NaN (NaN) 6.4623e — 1
(1.07e — 1) = (2.50e — 1)
8 2 1.1286 (9.50e — 2) = 1.1047 (6.67e — 2) = 1.0803 (7.66e — 2) = NaN (NaN) 5.4447¢ — 1
(1.56e — 1)
15 2 12717199 — 1) = 1.1725(1.32¢ — 1) = 1.2476 (2.07e — 1) = NaN (NaN) 9.5770e — 1
5.31le — 1)
MaF9 5 1.7128 (3.87e — 1) = 2.0585(2.70e — 2) = 1.8924 (1.33e — 1) = 2.2300(1.14e — 1) = 1.5972 (6.44e — 1)
8 1.2868 (1.21e — 1) = 1.8296 (4.47¢ — 1) = 1.6211 (3.73e — 1) = 1.0851 (3.43e — 1) = 1.7732 (2.16e — 1)
15 1.5916 (2.84e — 1) = 24722 (9.83e — 1) = 2.9304 (4.92¢ — 1) = 4.3533 (5.90) = 1.4401 (3.09¢ — 1)
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Table 5 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — IIl RVEA
MaF10 5 14  7.9805e — 1 6.7323¢ — 1 6.7863¢ — 1 57213¢ — 1 2.2878¢ — 1
(9.80¢ — 2) = (3.75¢ — 2) = (4.65¢ — 2) = (6.28¢ — 2) = (3.30¢ — 2)
8 17 22706e — 1 8.3695¢ — 1 8.6503¢ — 1 7.9783¢ — 1 1.2719 (4.58¢ — 2) =
(2.32¢ — 2) (449 — 2) = (129 — 1) = (6.166 — 2) =
15 24 5.8829 — 1 11777 (1.81e — 1) = 13819 (5.6le — 2) = 1.3356 (1.06e — 1) = 1.6342 (5.43¢ — 2) =
(4.82¢ — 2)
MaFll 5 14  12914e — 1 5.1622¢ — 1 47099 — 1 56109 — 1 6.7945¢ — 1
(3.52¢ — 2) (229 — 2) = (3.8le — 2) = (1.60e — 2) = (6.72¢ — 2) =
8 17  1.5464e — 1 8.5681e — 1 8.658% — 1 7.9612¢ — 1 9.9706e — 1
(2.73¢ — 2) (7.17e — 2) = (1.13e — 1) = (3.76e — 2) = (440 — 2) =
15 24 53570e — 1 1.0344 (1.38¢ — 2) = 1.0559 (2.49%¢ — 2) = 1.0194 (1.24e — 2) =  1.1447 (1.56¢ — 1) =
(8.90e — 2)
MaF12 5 14 1.1318e — 1 3.6795¢ — 1 2.7104e — 1 2.5697¢ — 1 5.8982¢ — 1
(2.60e — 3) (6.13¢ — 2) = (3.08¢ — 2) = (4.70e — 3) = (2.04e — 3) =
8 17  7.4428¢ — 1 3.7540e — 1 4.3963¢ — 1 4.1337¢ — 1 1.3986e — 1
(7.93¢ — 3) = (2.12e — 2) = (6.28¢ — 2) = (149 — 2) = (2.78¢ — 2)
15 24 14666 (3.12¢ —2) = 1.0639 (1.17e — 1) = 1.0307 (5.77e — 2) = 7.5267¢ — 1 4.9576e — 1
(249 — 1) = (2.05¢ — 2)
MaF13 5 13354 (3.82¢ — 1) =  2.0583 (3.82¢ — 2) = 2.0745 (243 — 2) =  5.6404 (3.79) = 17597 (4.95¢ — 1)
1.1491 (4.65¢ — 2) = 2.1979 (3.60e — 2) = 2.2185 (4.88¢ — 4) =  5.0848 (1.86) = 1.7431 (7.67e — 1)
15 1.8234 (4.40e — 1) = 3.8008 (1.14e — 1) = 3.7748 (7.97e — 2) = 1.2595 (3.25¢ — 1) = 2.3842 (1.18)
MaFl4 5 100 1.8068 (1.99¢ — 1) = 9.5830c — 1 9.0038¢ — 1 13202 (1.17e — 1) = 1.9210e — 1
(134e — 1) = (1.0le — 1) = (3.28¢ — 2)
8 160 13561 (491e — 1)= 12364 (446e — 1)= 1.0567 (2.36e — 1) = 1.3049 (6.53¢ — 1) = 1.795le — 1
(2.96¢ — 2)
15 300 4.6595¢ — 1 19592 (1.81e — 1) = 2.1179 (3.24e — 1) = 2.1905 (1.19) = 1.8145 (4.09 — 1) =
(2.37¢ — 2)
MaF15 5 100 1.8835¢ — 1 7.4657¢ — 1 9.0078¢ — 1 6.6079% — 1 7.1622¢ — 1
(I.1le — 2) (1.79% — 1) = (2.16e — 1) = (158 — 1) = (1.34e — 2) =
8 160 2.1277¢ — 1 8.5496¢ — 1 8.5116e — 1 8.0854e — 1 6.8865¢ — 1
(1.30e — 2) (I.1le = 1) = (1.14e — 1) = (7.97¢ — 2) = (2.60e — 2) =
15 300 5.4936e — 1 1.0538 (4.90e — 2) = 1.0437 (7.26e — 2) = 1.0116 (2.54e — 2) = 8.9416e — 1
(3.58 — 2) (2.73e — 2) =

(SD: 5.76e-3) is higher than that of MaOPSO and NSGA-
III, but marginally lower than MaOMFO and RVEA,
demonstrating its competence in achieving a diverse solu-
tion set. In this problem, In RWMaOP5, MaOMVO
achieves an HV of 5.4069e-1 (SD: 7.26e-3), which is
comparable to the other algorithms. Therefore, MaOMVO
has a better divergence for solving RWMaOPs. In Table 9
on the HV values, when respectively compared to
MaOMFO, MaOPSO, NSGA-III and RVEA, the proposed
MaOMVO is better in 4, 4, 5 and 5 out of 5 cases and is
only worse in 38.09%, 9.52%, 9.52% and 4.76% cases.
This suggests a balanced performance in maintaining both
coverage and diversity of the Pareto front shown in Fig. 7.

From Table 10, the overall running time of MaOMVO is
observed to be significantly lower compared to other
algorithms across various RWMaOPs, indicating its supe-
rior computational efficiency. In RWMaOP1, MaOMVO
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runtime is 4.7818 s (SD: 0.91), accounting for only 27%,
45%, 41% and 96% of the runtimes of MaOMFO
(17.491 s), MaOPSO (10.627 s), NSGA-III (11.715 s) and
RVEA (49501 s), respectively. This demonstrates
MaOMVO significantly faster running speed. In
RWMaOP2, a runtime of 8.125 s (SD: 0.316), MaOMVO
operates at about 50%, 83% and 72% of the speeds of
MaOMFO (16.232 s), MaOPSO (9.8068 s) and RVEA
(11.188 s), highlighting its efficiency. In RWMaOP3,
MaOMVO records a runtime of 1.6577 s (SD: 0.4), which
is significantly faster, operating at approximately 13%,
23% and 36% of the speeds of MaOMFO (13.069 s),
MaOPSO (6.9385 s) and RVEA (4.6233 s). In RWMaOP4,
MaOMVO runtime of 1.3095 s (SD: 0.403) is markedly
quicker, functioning at about 13%, 22% and 34% of the
runtimes of MaOMFO (10.132 s), MaOPSO (5.8930 s) and
RVEA (3.7994 s). In RWMaOP5, MaOMVO completes its
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Table 6 HV metric of various algorithms on MaF problems

Probem M D  MaOMVO MaOMFO MaOPSO NSGA — IIT RVEA
MaFl 5 14 7.5417e — 3 4.0867¢ — 3 3.7271e — 3 7.2382¢ — 3 6.4508¢ — 3
(1.58 — 4) = (2.13¢ — 4) = (491e — 4) = (2.54e — 4) = (2.98¢ — 4)
8 17 1469le —5 1.8231e — 5 1.8688¢ — 5 6.3141e — 6 2.826% — 6
(2.12¢ — 6) = (2.45¢ — 6) = (6.10e — 7) = (1.10e — 6) = (1.72¢ — 6)
15 24 0.0000 (0.00) = 8.5509¢ — 13 6.4663¢ — 13 1.4332¢ — 13 1.6436e — 13
(2.16e — 13) = (1.16e — 13) = (5.49 — 14) = (1.18¢ — 13)
MaF2 5 14  1.573% — 1 1.5229¢ — 1 1.5267¢ — 1 1.6258¢ — 1 1.4398¢ — 1
(4.58¢ — 4) = (1.35¢ — 3) = (2.25¢ — 3) = (1.05¢ — 3) = (1.34e — 3)
8 17 1.3880e — 1 1.6858¢ — 1 1.5185¢ — 1 1.2992¢ — 1 1.5329¢ — 1
(4.34e — 3) = (8.57¢ — 3) = (1.19¢ — 2) = (8.29¢ — 3) = (6.5% — 3)
15 24 1.2240e — 1 9.4134e — 2 9.2663¢ — 2 8.7935¢ — 2 7.5425¢ — 2
(121e — 2) = (8.36e — 3) = (1.78¢ — 3) = (9.58 — 3) = (1.06e — 2)
MaF3 5 14 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
8 17 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
15 24 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
MaF4 5 14 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
8 17  0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
15 24 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
MaF5 5 14 7.579%e — 1 7.4994e — 1 6.6288¢ — 1 6.6854e — 1 5.8977e — 1
(3.76¢ — 3) = (1.06e — 2) = (6.99% — 2) = (3.0le — 2) = (6.93¢ — 2)
8 17 8.6244e — 1 8.5092¢ — 1 8.6788¢ — 1 6.1051e — 1 0.0000 (0.00)
(9.76e — 3) = (177 — 2) = (1.13¢ — 2) = (5.55¢ — 2) =
15 24  7.6473¢ — 1 7.893% — 1 7.8945¢ — 1 23212 — 1 0.0000 (0.00)
(1.04e — 2) = (1.35¢ — 3) = (1.27e — 2) = (5.12¢ — 2) =
MaF6 5 14 1274le — 1 1.2416e — 1 1.2437e — 1 1.2304e — 1 1.2782¢ — 1
(5.7% — 4) = (8.62¢ — 4) = (1.36e — 3) = (9.77¢ — 4) = (9.02¢ — 4)
8 17 1.0391e — 1 6.8249% — 2 6.5266e — 2 9.6833¢ — 2 3.4908¢ — 2
(6.21e — 4) = (5.91e — 2) = (5.65¢ — 2) = (5.65¢ — 3) = (6.05¢ — 2)
15 24 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 9.1768¢ — 2 0.0000 (0.00)
(4.66e — 4) =
MaF7 5 24  1.5493e — 1 1.4184e — 1 1.4858¢ — 1 1.3066e — 1 1.3382¢ — 1
(2.06e — 2) = (281le — 2) = (1.97¢ — 2) = (4.28¢ — 2) = (1.6% — 2)
8 27 34638 —2 4.5978¢ — 2 3.6024e — 2 2.7666e — 3 1.5964e — 9
(2.35¢ — 2) = (2.90e — 2) = (143e — 2) = (3.22¢ — 3) = (1.83¢ — 9)
15 34 8.1312e — 9 3.0258¢ — 2 5.9900e — 2 2.9717¢ — 3 0.0000 (0.00)
(1.26¢ — 8) = (2.87¢ — 2) = (5.41e — 3) = (2.8% — 3) =
MaF§ 5 2  8.4805e — 2 3.8709 — 2 3.8949¢ — 2 1.7887¢ — 2 4.5710e — 2
(231e — 2) = (1.62¢ — 2) = (4.05¢ — 2) = (1.53¢ — 2) = (3.06¢ — 2)
8 2 97439 — 3 3.0065¢ — 3 1.4835¢ — 2 3.0244e — 3 1.2420e — 2
(14le — 2) = (4.73¢ — 3) = (8.71e — 3) = (3.44e — 3) = (6.32¢ — 3)
15 2 23993 — 4 1.5809¢ — 4 1.9035¢ — 4 1.6443¢ — 5 1.2979¢ — 4
(1.09 — 4) = (4.37¢ — 5) = (7.53¢ — 5) = (2.63¢ — 5) = (1.60e — 4)
MaF9 5 2 89764e — 2 1.8978¢ — 1 1.9693¢ — 1 1.9554e — 1 8.0277¢ — 2
(9.0le — 2) = (2.58¢ — 2) = (4.87e — 2) = (2.77e — 2) = (2.42¢ — 2)
8 2 18235 -3 0.0000 (0.00) = 6.2998¢ — 3 1.058% — 2 0.0000 (0.00)
(3.16e — 3) = (1.09¢ — 2) = (9.26e — 3) =
15 2 1.1182 — 4 5.8158¢ — 5 1.1240e — 4 44142 — 5 0.0000 (0.00)
(1.94¢ — 4) = (1.01e — 4) = (1.95¢ — 4) = (7.65¢ — 5) =
MaF10 5 14 54932¢ — 1 6.0781e — 1 5.3470e — 1 5.2425¢ — 1 5.8150e — 1
(5.82¢ — 2) = (4.64e — 2) = (3.13e — 2) = (7.01e — 2) = (1.62¢ — 3)
8 17 43833 — 1 5.377% — 1 5.3578¢ — 1 3.6182 — 1 4.7045¢ — 1
(1.58e — 2) = (1.56e — 1) = (5.19¢ — 2) = (4.50e — 3) = (5.91e — 2)
15 24 5.420le — 1 8.6805¢ — 1 9.5806e — 1 4.5366e — 1 7.3276e — 1
(631e — 2) = (9.77¢ — 2) = (6.34e — 2) = (3.0le — 2) = (1.26¢ — 1)
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Table 6 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — IIl RVEA
MaFl1l 5 14 9.5367e — 1 9.4840e — 1 9.5948¢ — 1 9.1492¢ — 1 9.6496¢ — 1
(121e — 2) = (6.02¢ — 3) = (5.33¢ — 3) = (137¢ — 2) = (4.26¢ — 3)
8 17 9.5266e — 1 9.6555¢ — 1 9.6103¢ — 1 8.4806e — 1 9.5721e — 1
(4.55¢ — 3) = (1.0le — 2) = (9.33¢ — 3) = (3.0le — 2) = (1.03¢ — 2)
15 24 93402¢ — 1 9.1073¢ — 1 8.7589¢ — 1 7.7072¢ — 1 8.2514e — 1
(241e — 2) = (4.17e — 2) = (4.18¢ — 2) = (2.56e — 2) = (8.6% — 2)
MaF12 5 14 5.7308e — 1 57372 — 1 6.0634e — 1 5.6404e — 1 5.3988¢ — 1
(2.64¢ — 2) = (3.97¢ — 2) = (2.62¢ — 2) = (2.67¢ — 2) = (6.98¢ — 2)
8 17 5.56lde — 1 6.0045¢ — 1 5.5260e — 1 4.4554¢ — 1 4.4699 — 1
(271e — 2) = (3.05¢ — 2) = (2.6le —2) = (11le — 1) = (8.17¢ — 2)
15 24 3737le — 1 4.8106e — 1 4.3354e — 1 32317e — 1 2.536% — 1
(132 — 1) = (5.96e — 2) = (2.17e — 2) = (6.03¢ — 2) = (1.02¢ — 1)
MaFI3 5 5  2248le — 1 1.1349% — 1 1.5374e — 1 1.2063¢ — 2 1.5617¢ — 1
(7.33¢ — 3) = (342 — 2) = (6.78¢ — 3) = (1.88¢ — 2) = (3.30¢ — 2)
8 5 1.4545¢ — 1 4.0060e — 2 2.2510e — 2 4.5136e — 2 1.1375¢ — 1
(6.60e — 3) = (3.73¢ — 2) = (3.60e — 3) = (3.87¢ — 2) = (1.51e — 2)
15 5 62025 — 2 5.6318¢ — 5 55142 — 5 1.0063¢ — 2 2.0845¢ — 2
(1.64e — 2) = (9.50e — 5) = (5.88¢ — 5) = (1.74e — 2) = (3.56e — 2)
MaFl4 5 100 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
160 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
15 300 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
MaF15 5 100 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
8 160 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)
15 300 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00) = 0.0000 (0.00)

run in 3.5654 s (SD: 0.192), which is considerably faster,
amounting to only 32%, 66% and 115% of the runtimes of
MaOMFO (11.017 s), MaOPSO (5.3892 s) and RVEA
(3.1017 s). In Table 10, RT value compared to MaOMFO,
MaOPSO, NSGA-III and RVEA, the proposed MaOMVO
is better in 5, 5, 3 and 5 out of 5 cases. However, it slightly
slower compared to NSGA-III. These findings demonstrate
that MaOMVO has a faster running speed across a range of
complex many-objective problems, indicating higher
search efficiency and computational effectiveness. Specif-
ically, MaOMVO performance in RWMaOP1, RWMaOP2
and RWMaOP3, where it significantly outperforms other
algorithms in terms of runtime, is particularly noteworthy.
This efficiency in computation makes MaOMVO a
preferable choice in scenarios where time efficiency is
crucial. In particular, based on the Wilcoxon rank-sum test,
MaOMVO obtains the best score of 1.83, which means that
our proposed algorithm outperforms MaOMFO, MaOPSO,
NSGA-III and RVEA achieves 15, 12.955, 5.58 and 7.75.
Thus, MaOMVO shows better overall performance com-
pared to MaOMFO, MaOPSO, NSGA-III and RVEA.
MaOMVO significantly outperforms MaOMFO, MaOPSO,
NSGA-III and RVEA in terms of overall runtime across
various MaF and RWMaOP problems, achieving up to
56% shorter runtime than MaOMFO, 69% shorter than
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NSGA-III and 70% shorter than RVEA, without compro-
mising solution quality.

The experimental results present a comprehensive
assessment of the MaOMVO algorithm against MaOMFO,
MaOPSO, NSGA-IIT and RVEA across several benchmark
functions and RWMaOPs. MaOMVO consistently
achieved the lowest Generational Distance (GD) values,
demonstrating its superior convergence to the true Pareto
front. Specifically, MaOMVO outperformed the other
algorithms in 32 out of 45 problems, with an average GD
improvement of approximately 70% over MaOMFO, 70%
over MaOPSO, 50% over NSGA-III and 95% over RVEA.
In terms of Inverted Generational Distance (IGD),
MaOMVO exhibited significantly better performance,
indicating enhanced distribution and convergence. It
excelled in 23 out of 45 problems, with an average IGD
improvement of 52% over MaOMFO, 52% over MaOPSO,
38% over NSGA-III and 87% over RVEA. When evalu-
ating Spacing (SP), which measures the even spread of
solutions, MaOMVO consistently maintained an even
spread, outperforming the other algorithms in 21 out of 45
problems. The average SP improvement was about 46.66%
over both MaOMFO and MaOPSO, 26.66% over NSGA-
IIT and 53.33% over RVEA. MaOMVO also showed sub-
stantial improvement in Spread (SD) values, reflecting its
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Table 7 RT metric of various algorithms on MaF problems

Problem M D

MaOMVO

MaOMFO

MaOPSO

NSGA — 1II

RVEA

MaF1

MaF2

MaF3

MaF4

MaF5

MaF6

MaF7

MaF8

MaF9

MaF10

MaFl11

5

15

15
5

15
5

15

14

17

24
14

17

24
14
17
24
14
17
24
14

17
24
14
17
24

24

27

34

14

17

24
14

17

24

1.5281 (4.27e —

1.7709 (6.46e —

2.0190 (1.83e —
1.5221 (1.60e —

1.5819 (4.01e —

2.5633 (6.38e —
1.2059 (1.13e —
1.5518 (4.67e —
2.6713 (2.34e —
1.6247 (2.74e —
4.6137 (4.78e —
3.1651 (6.18e —

1.4047¢ = 1
(3.98 — 1) =

2) =
1) =
2) =
1) =
1) =
1) =
1) =

1.4338¢ = 1 (143) =

7.6187 (2.33e —
1.2223 (2.43e —
1.2902 (3.40e —
1.9597 (1.07¢

1.4926 (1.20e —

1.5008 (2.66¢

2.6821 (4.99¢ —

5.6871 (2.49) =
1.4950 (7.58¢ —

9.7803e — 1
(2.09 — 1) =

1.8366 (1.88e

2.1024 (4.42¢ —

1.5853 (1.93e
5.1296 (1.38e

5.3787 (2.08e —

2.2927 (1.07e

1.2126¢ = 1
(4.6% — 1) =

12572 = 1
(532 — 1) =

6.6817 (3.41e —

1) =
1) =
1) =
1=

1) =

4.3344 (9.51e —

4.7866 (6.86e

8.6955 (5.57e —
1.9634 (2.57e —

3.4181 (2.75¢

8.7888 (2.12¢ —
1.8803 (4.51e —
4.5373 (4.50e —
8.8612 (2.91¢ —
5.1629 (5.83¢ —
4.5280 (3.15¢ —
9.5534 (5.27¢ —
17133 (7.71e —

2.0353 (3.39
5.6632 (2.77) =
4.0586 (1.8% —
5.1684 (3.14e —

1.0525¢ = 1
(3.09 — 1) =
42351 (7.65¢ —

5.4368 (5.59% —

1.0487¢ = 1
(432 — 2) =

3.6236 (6.73¢ —

3.8835 (4.20e —

6.7216 (1.04) =
3.7166 (1.33) =
2.7758 (1.01e —
5.4050 (3.75¢ —

9.9870e — 1
(6.63¢e — 2) =

1.4094 (2.16e —

5.2546 (1.95¢
2.1533 (1.01e —

4.5728 (9.67¢

1.0320e = 1
(44le — 1) =

2.7028 (8.46e —

3.9702 (3.28e

8.6014 (3.48¢ —
1.3266 (4.28e —

2.9626 (1.24e

8.4311 (2.07¢ —
2.3174 (7.26e —
3.9306 (3.10e —
8.8044 (2.85¢ —
4.5385 (5.38¢ —
3.9015 (3.79
8.5601 (5.38¢ —
3.8131 (1.22) =

1.5132 (2.60e
3.3153 (4.33e —
4.1221 (1.78e —
4.6962 (5.13e —

1.0556e = 1
(3.09 — 1) =

4.0836 (9.27¢ —

6.8632 (6.04e —

1.0636e = 1
(6.3% — 1) =

3.1040 (3.72¢
3.2718 (3.66¢

6.1333 (3.35¢ —

2.7204 (7.59%

2.4948 (2.05e¢ —

5.1892 (1.12¢

9.6112¢ — 1
(1.19 — 1) =
8.5237¢ — 1
(647 — 2) =
4.6607 (8.82¢ —
1.6419 (1.81e —

3.8560 (1.35) =

9.9612 (7.73¢ — 2) =

D

1.376% + 1
(6.166 — 1) =
1.1932¢ = 1
(3.20e — 2) =
54411 (2.65¢ —
1.7256¢ = 1
(3.75¢ — 1) =
1.4947¢ = 1
(7.90e — 2) =
8.0922 (5.52¢ —
5.3330 (2.23¢ —
6.5621 (4.33¢ —
3.8065 (1.04e —
5.0138 (9.78¢ —
1.5128 (4.16¢
2.3967 (1.06¢
1.8572 (7.07¢ —

1.6805 (1.46e
2.4568 (2.74e
4.0622 (5.55¢ —
3.4693 (2.98¢ —
4.1781 (3.15¢

1.3348e = 1
(3.07e — 1) =

1.395% = 1
(5.48¢ — 2) =

8.0002 (1.73e —

9.0150 (4.47¢ —

1.0465¢ = 1
(5.67e — 1) =

24713¢ = 1
(829 — 1) =

5.3798¢ — 1
(6.37¢ — 2) =

6.2856¢ — 1
(6.85¢ — 2) =

1.6248 (3.06¢ —

7.3024e — 1
(8.45¢ — 2) =

9.6475¢ — 1
(2.60e — 1) =

1.6893 (3.21e —

1.7895 (3.00e —

2.0485 (2.89% —

22371 (3.12e — 2) =

D

1y

1Y)

1Y)

6.8239 (6.26e —

5.3276 (1.99¢ —

3.0035 (1.52e —

1.0366e = 1
(2.86e — 1)

8.6466 (1.16e

3.9477 (4.30e —
2.8404 (3.21e —
6.4666 (1.06e —
43824 (3.74e —
2.5134 (1.36e —
3.0370 (2.87e —
2.5540 (1.35¢ —
7.5143 (7.56e —

7.6626 (2.54¢ —
37337 (1.16e —
2.8747 (6.41e —
4.5371 (1.37)

3.4926 (4.07e —

6.0596 (2.33e —

6.5817 (1.03e —

3.2849 (6.99e —

1.2462 (1.91e —
1.2858 (1.88e —

1.0935 (7.53e —

1.2524 (1.08e —

1.1467 (2.80e —

1.2310 (7.97e —
2.3037 (3.82¢ —

2.3860 (1.34e —

2.0070 (3.10e —
5.3970 (1.59¢ —

5.5439 (1.98e —

2.8836 (6.83e —

1y}

D

D

D

2
D
D
D
D
D
D
D

2)
D
2)
2
D
D

2)

D
D

2)

Y}

2)

2)
2)

D

D
D

D

2)
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Table 7 continued

Problem M D  MaOMVO MaOMFO MaOPSO NSGA — III RVEA
MaF12 5 14 14213e=1 1.8750 (6.86e —2) = 12873 (1.24e — 1) = 1.7116 (5.32¢ —2) = 8.9110 (2.46e — 1)
(9.40e — 1) =
8 17 1347% =1 3.0611 (2.70e — 1) =  1.9624 (1.66e — 1) = 1.7473 (1.98¢ — 1) =  8.1377 (1.90e — 1)
(1.87e — 1) =
15 24 6.6806 (1.66e — 1) = 1.042le =1 1.0013e =1 2.3860 (1.05e — 1) =  3.5439 (5.94e — 2)
(9.43e — 2) = (1.19¢ — 1) =
MaF13 5 6.5177 (2.02¢ — 1) = 42534 2.57e — 1) = 4.3042 (44le — 1) = 1.0020 (5.42e — 2) = 2.5266 (2.0le — 1)
8 5 1.0824 (1.59¢ — 1) = 4.8467 (1.13e — 1) =  4.1995 (4.70e — 1) = 5.2965 (1.30e — 1) =  2.4775 (2.90e — 1)
15 5 1.6063 (3.39e — 2) = 1.020le = 1 9.9589 (9.94e —2) = 2.9085 (1.00e — 1) = 1.8548 (1.8% — 2)
(3.75¢ — 1) =
MaF14 5 100 1.7140 (3.19¢e — 2) = 2.8448 (1.45¢ — 1) = 2.9567 (5.03e — 1) = 1.027% =1 5.7646 (8.65¢ — 1)
(395¢ — 1) =
8 160 2.1740 (5.96e — 2) = 4.8448 (7.17e — 2) = 4.6781 (9.93e — 2) = 9.3837 (2.57) = 7.0185 (9.5% — 2)
15 300 3.8311 (5.36e —2)= 1.1078e =1 1.0787e = 1 45521 (1.37e — 1) = 5.0151 (1.14e — 1)
(2.40e — 1) = (322 — 1) =
MaF15 5 100 1.6563 (5.88¢ —2) = 3.8219 (1.06e — 1) = 3.5724 (4.6le — 1) = 1.0049%¢ =1 6.2229 (1.28¢ — 1)
(3.5% — 1) =
8 160 2.0398 (1.27e — 1) = 49157 (191e — 1) = 4.7299 (144e — 1) = 1.022% =1 7.2916 (1.35¢ — 1)
(593e — 1) =
15 300 8.0614 (1.33e — 1) = 1.1065¢ = 1 1.0912e = 1 3.7682 (2.58¢ — 2) = 52121 (1.45e — 2)
(3.16e — 1) = (3.70e — 1) =
Table 8 SP metric of various algorithms on RWMaOP problems
Problem M D MaOMVO MaOMFO MaOPSO NSGA — III RVEA

RWMaOP1 9 7 1.1789 (1.86e — 1) = 3.6738 (1.72) =

RWMaOP2 4 10 1.0625¢ + 4 9.2258¢ + 2
(8.47¢ + 3) = (3.90e + 2) =

RWMaOP3 7 3 1.6218¢ + 1 (2.60) = 4.978le + 1
(1.87e — 1) =

RWMaOP4 5 6 5.827le +4 4.7376e + 4
(9.55¢ + 3) = (6.19% + 3) =

RWMaOP5 4 4 43183¢ — 2 1.0094e — 1
(377 — 3) = (4.24e — 3) =

35172 (547¢ — 1) =

9.3325¢ + 2
(4.99 + 2) =

3.5545¢ + 1 (2.24) =

1.6622 (3.6%¢ — 1) =

1.3447e + 3
(82le + 1) =

2.9020e + 1 (4.79) =

2.3390 (3.85¢ — 1)

6.5046e + 2
(9.82¢ + 1)

3.4539% + 1 (7.16)

5.2691e + 4 277878 + 4 1.0419 + 5
(5.25¢ + 3) = (6.62¢ + 3) = (491e + 4)

8.7328¢ — 2 7.7644e — 2 9.3097¢ — 2
(9.17e — 3) = (2.73e — 2) = (7.57e — 3)

ability to maintain diversity among solutions. It achieved
better SD performance in 25 out of 45 problems, with an
average SD improvement of 55.55% over MaOMFO,
55.55% over MaOPSO, 48.88% over NSGA-III and
64.44% over RVEA. In terms of Hypervolume (HV),
which indicates a better approximation of the Pareto front,
MaOMVO had notably higher mean HV values, excelling
in 23 out of 45 problems. The average HV improvement
was 52% over both MaOMFO and MaOPSO, 28% over
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NSGA-IIT and 76% over RVEA. Regarding runtime (RT),
MaOMVO demonstrated significant efficiency gains,
achieving lower runtime values across all tests. It per-
formed better in 23 out of 45 problems, with an average RT
reduction of about 52% over MaOMFO, 52% over
MaOPSO, 42% over NSGA-III and 76% over RVEA. In
the context of RWMaOPs, such as the Car Cab Design
(RWMaOP1), MaOMVO achieved a mean SP improve-
ment of 40.7% over MaOMFO and 45.25% over MaOPSO,
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Fig. 7 Best Pareto optimal front obtained by different algorithms on RWMaOP problems
Table 9 HV metric of various algorithms on RWMaOP problems
Problem M D MaOMVO MaOMFO MaOPSO NSGA — III RVEA
RWMaOP1 9 7 2.1753e¢ — 3 1.6430e — 3 1.2536e — 3 7.6186e — 4 2.1445¢ — 3
(1.60e — 4) = (3.23e — 4) = (9.32e — 5) = 2.71e — 4) = 9.67e — 5)
RWMaOP2 4 10 8.146le — 2 7.4398e — 2 23119 — 2 5.9080e — 2 8.0338e — 2
(5.40e — 4) = 23le — 3) = (1.1le — 2) = (5.33¢e — 3) = (1.0de — 3)
RWMaOP3 7 3  1.588% — 2 1.6418¢ — 2 1.708% — 2 1.6782¢ — 2 1.6141e — 2
(594e — 4) = (2.89¢ — 4) = (13le — 4) = (2.60e — 4) = (5.32¢ — 4)
RWMaOP4 5 6 54170e — 1 5.405% — 1 4.7750e — 1 5.1917e — 1 5.3563e — 1
(5.76e — 3) = (5.90e — 3) = (1.06e — 2) = (243e — 2) = (9.89%¢ — 3)
RWMaOP5 4 4 540069 — 1 5.4240e — 1 5.4027e — 1 5.3096e — 1 53124e — 1
(7.26e — 3) = 2.07e — 3) = (3.55¢ — 3) = (1.05e — 2) = (5.11e — 3)
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Table 10 RT metric of various algorithms on RWMaOP problems

Problem M D MaOMVO MaOMFO MaOPSO NSGA — TII RVEA
RWMaOPl 9 7 47818 1.7491e + 1 (147) = 1.0627¢ + 1 11715 247e — 1) = 4.9501

(9.10e — 1) = (3.92¢ — 1) = (431le — 1)
RWMaOP2 4 10 8.1250 1.6232¢ + 1 (5.42) =  9.8068 (3.09¢ — 1) =  1.5958¢ + 1 (1.37) =  1.1188e + 1

(3.16e — 1) = (1.37)
RWMaOP3 7 3  1.6577 1.3069¢ + 1 6.9385 (3.74e — 1) = 5.5852 (2.67) = 4.6233

(4.00e — 1) = (4.76e — 1) = (272 — 1)
RWMaOP4 5 6  1.3095 1.0132¢ + 1 5.8930 (3.73e — 1) = 45277 (8.17e — 1) = 3.7994

(4.03¢ — 1) = (2.23¢ — 1) = (3.02¢ — 1)
RWMaOP5 4 4 3.5654 1.1017e + 1 53892 (1.75¢ — 1)=  9.9812¢ — 1 3.1017

(1.92¢ — 1) = (6.8% — 1) = (3.29 — 1) = (3.03¢ — 1)

with better performance in 3 out of 5 problems. The mean
HYV improvement for MaOMVO was 9.5% over MaOMFO
and 13.1% over MaOPSO, with superior performance in 3
out of 5 problems. Additionally, MaOMVO demonstrated a
mean RT reduction of 30.25% over MaOMFO and 34.6%
over MaOPSO, excelling in 3 out of 5 problems. These
results confirm that the MaOMVO algorithm consistently
outperforms the other four algorithms across multiple
performance metrics, demonstrating its robustness and

efficiency in solving many-objective optimization
problems.
Conclusions

Over the last ten years, numerous techniques have been
developed to gauge convergence efficiency. Analysis of
these key methods reveals a tendency towards uneven
candidate solution selection, which in turn impacts the
diversity of the resultant non-dominated solutions.
Addressing this, the current study introduces a novel
MaOMVO based on the reference point, niche preserve and
information feedback mechanism for solving Many-ob-
jective Optimization Problems (MaOPs). These mecha-
nisms, applied during environmental selection following
non-dominated sorting, prove effective in preserving
solutions across both central and peripheral areas in the
objective space, thus significantly improving population
diversity. Comprehensive tests were conducted on the
MaF1-MaF15 benchmark, covering 5, 8 and 15 objectives.
These tests, assessed using GD, IGD, SP, SD, HV and RT
metrics, demonstrate MaOMVO superiority over
MaOMFO, MaOPSO, NSGA-III and RVEA algorithms.
Thus, the MaOMVO further examination and validation
across five real-world (RWMaOP1- RWMaOP5) engi-
neering challenges to confirm its utility and effectiveness.
A thorough comparison of experimental results shows that
MaOMVO effectively balances convergence and diversity

@ Springer

in the non-dominated solution set for RWMaOPs. It out-
performs five other algorithms in guiding solutions towards
the entire Pareto front. Moreover, MaOMVO excels in
handling challenges marked by concave, convex and mixed
Pareto fronts (PF) with as many as 15 objectives.

Research in this area can be further extended in future
by—

1. Enhancing MaOMVO for benchmark problems with
degenerate Pareto fronts where it currently shows
limitations.

2. Exploring alternative search operators, such as modern
algorithms, within this framework, as the current
implementation primarily utilizes the MVO operator.

3. Expanding the application of MaOMVO to dynamic
many-objective optimization and real-world applica-
tions, like truck scheduling, power system scheduling
and antenna array design, is also noteworthy.

Appendix 1: Real World Many-objective
Engineering Design Optimization Problems:

1.1 RWMaOP1: Car Cab Design Problem [27]

minimize

weight of the car = f,(x) = 1.98 + 4.9x; + 6.67x,
+ 6.98x3 +4.01x4 + 1.78x5
+ 0.00001xg + 2.73x7

f>(x) = Collision Force
=1- (116 — 0.3717X2)C4 — 0.00931)(2)C10
—0.484X3X9 + 0.01343)66)610)



J. Inst. Eng. India Ser. C

f3(x) = Bumper Displacement
= (0.32 — (0.261 — 0.0159x1x; — 0.188x x5
—0.019x2x7 + 0.0144x3x5 + 0.8757x5x1¢
+0.08045x6x9 + 0.00139x8x1; + 0.00001575x10x11))

fa(x) = Rear Seat Displacement
= 0.32 — (0.214 4 0.00817x5 — 0.131x;x3
— 0.0704x1x9 + 0.03099x,x6 — 0.018x2x7
4 0.0208x3xg + 0.121x3x9 — 0.00364x5x¢
+ 0.0007715)65)(10 - 0.0005354X6X10
4+ 0.00121xgx1140.00184x9x19 — 0.018)62XQ)

fs(x) = Front Seat Displacement
=0.32 — (0.74 — 0.61x; — 0.163x3x3
+0.001232X3X10 — 0.166X7)C9 + .227)62)62)
f6(x) = Engine Compartment Displacement

. <URD*MRD>|<LRD>
e 3

f7(x) = Roof Displacement
=32— (472 -0.5x — 4 — 0.19x2x3
—0.0122x4x19 + 0.009325x6x10 + 0.000191x11x11)

f3(x) = Rear Collision
=4 — (1058 — 0.674)61)62 — 1.95)62)Cg
+.02054x3x190 — .0198x4x109 + .028x5x10)

fo(x) = Side Impact
=9.9 — (16.45 — 0.489x3x; — 0.84x5x¢
+0.043X9X10 — 0.0556X9X11 — 0000786)6] lxll)

Subject to

g (x) =1—(1.16 — 0.3717x2x4 — 0.00931x2x10
—0.484x3x9 + 0.01343x6x10) >0

2 (x) = 0.32 — (0.261 — 0.0159x,x, — 0.188x,xg
—0.019X2X7 + 0.0144X3)C5 + 0.8757)C5X10
+0.08045x6x9 + 0.00139xgx11 + 0.00001575x10x11) >0

g3(x) = 0.32 — (0.214 + 0.00817x5 — 0.131x,xg
— 0.0704x1x9 + 0.03099x,x6 — 0.018x,x7
+ 0.0208x3x5 + 0.121x3x9 — 0.00364x5x¢
+ 0.0007715X5X10 - 0.0005354)66)(10
4+ 0.00121xgx11+0.00184x9x19 — 0.018)62)(?2) >0

g4(x) =0.32 — (0.74 — 0.61x, — 0.163x3x3
+0.001232x3x19 — 0.166x7x0 + .227x2x2) > 0

URD x MRD x LRD
85(x):32—< D )20

URD = 28.98 + 3.818x3 — 4.2x1x; + 0.0207x5x10
4+ 6.63x6x9 — 7.77Tx7x5 + 0.32x9x10

MRD = 33.86 4+ 2.95x3 + 0.1792x19 — 5.057x1x
— 11)62)63 — 0.0215)65)61() — 9.98)67)68 + 22)63)69

LRD = 46.36 — 9.9x, — 12.9x,x5 + 0.1107x3x1¢

86(x) =32 —(4.72 — 0.5x — 4 — 0.19x2x3
—0.0122x4x19 + 0.009325x6x19 + 0.000191x1;x1;) >0

g7(x) =4 — (10.58 — 0.674x1x, — 1.95x2x3
+.02054X3X10 — .0198)64X10 + .028X6X10) Z 0

gs(x) = 9.9 — (16.45 — 0.489x3x; — 0.84x5x6
+0.043XQ)C1() — 0.0556)(9)611 — 0000786)61 1X1]) Z 0

X] € [0.5,1.5};)62 S [0.45,1.35];)63 S [0.5,1.5};)(4
€ [0.5,1.5];x5 € [0.875.2.625]; x6 € [0.4,1.2]; x7
€ [0.4,1.2];

where B-Pillar inner (x;), B-Pillar reinforcement (x;), floor
side inner (x3), cross members (x4), door beam (xs), the
door beltline reinforcement (x¢) and roof rail (x7).

1.2 RWMaOP2: 10-Bar Truss Structure Problem
[28]

A real world many-objective 10-bar truss structure opti-
mization problem (RWMaOP2):

m
Fi(X) = mass = A;pL;

i=1
F>(X) = compliance = 6 * F
F3(X) = inverse of first natural frequency

1
1000000 <f_1)

L;()m[)‘
F4(X) = maximum buckling factor = max =
J
Subject to:
Behavior  constraints:g;(X) :  Stress  constraints,

R <0g,(X) : Euler buckling constraints,
oot _ gor "
max #) <0, where ¢f" = =5
J ;

Side constraints:

Cross—sectional area constraints,A§nin <A; <A

Mass Density (p), elastic modulus (E) and permit-
table stress (™) are assumed as 7850 kg/m?, 200GPa and
400MPa respectively.
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1.3 RWMaOP3: Water and Oil Repellent Fabric
Development [29]

The water (f,(x) = —WCA) and oil (f,(x) = —OCA) dro-
plet contact angle; the air permeability (f;(x) = —AP),
which measures the airflow through a woven fabric as a
comforting property; the crease recovery angle
(f4(x) = —CRA), which measures the ability of textiles to
recover from creasing; the stiffness (f5(x) = Sriff), which
is the cotton fabric comfort property; the tear strength
(f¢(x) = —Tear) of the finished fabric, which depends on
the chemical finishing treatment applied to the fabric; and
the tensile strength (f;(x) = —Tensile) optimization prob-
lem (RWMaOP3) as follows:

minimize
f1(x) = —WCA
=—(—1331.04+ 199 x O — CPC+0.33 x K

— FEL 4 17.12 x C — Temp — 0.02 x O — CPC?
—0.05 x C — Temp® + 15.33).

f>(x) = —OCA
= —(—4231.14 +4.27 x O — CPC 4 1.50 x K
— FEL +52.30 x C — Temp — 0.04 x O — CPC
x K — FEL —0.04 x O — CPC* —0.16 x C
— Temp® +29.33).

f3(x) = —AP
= —(1766.80 — 32.32 x O — CPC — 24.56 x K
— FEL — 10.48 x C — Temp + 0.24 x O — CPC
X C—Temp +0.19 x K — FEL x C — Temp
—0.06 x O — CPC* —0.10 x K — FEL?
+413.33).

fa(x) = —CRA
= —(—2342.13 — 1.556 x O — CPC +0.77 x K
— FEL 4 31.14 x C — Temp + 0.03 x O — CPC?
—0.10 x C — Temp® +73.33).

fs(x) = Stiff
=93440.02x O—CPC—-0.03 x K—FEL
—0.03 x C—Temp —0.001 x O — CPC x K

— FEL +0.0009 x K — FEL* +0.22.

fe(x) = —Tear
= —(1954.71 + 14.246 x O — CPC +5.00 x K
— FEL —4.30 x C — Temp — 0.22 x O — CPC*
—0.33 x K — FEL*> + 8413.33).

@ Springer

f7(x) = —Tensile
= —(828.16 + 3.55 x O — CPC 4+ 73.65 x K
— FEL 4 10.80 x C — Temp — 0.56 x K — FEL
x C — Temp 4 0.20 x K — FEL* 4 2814.83).

and x = (0 — CPC,K — FEL,C — Temp)", such that
10<0 — CPC<50.

1.4 RWMaOP4: Ultra-Wideband Antenna Design
[30]

The voltage standing wave ratio (VSWR) over the pass-
band (f,(x) = VPVP), the VSWR over the WiMAX band
(fo(x) = —VWi), the VSWR over the WLAN band
(f3(x) = —VWL), the E- and H-planes fidelity factor
(f4(x) = —FF) and the maximum gain over the passband
(f5(x) = PG) RWMaOP4 is stated as:
minimize
fix)=VpP
= 502.94 — 27.18 x ((w; — 20.0)/0.5) + 43.08
x ((I; —20.0)/2.5) +47.75 x (a1 — 6.0) + 32.25
x ((b1 —5.5)/0.5) +31.67 x (an — 11.0)
—36.19 x ((w; —20.0)/0.5) x ((w, —2.5)/0.5)
—39.44 x ((w; —20.0)/0.5) x (a; — 6.0)
+57.45 x (a1 — 6.0) x ((b; — 5.5)/0.5).

f2(x) = —VWi = —(130.53 4+ 45.97 x ((I; — 20.0)/2.5) —
52.93 x ((w;— 20.0)/0.5) — 78.93 x (a; — 6.0) +79.22 x
(a — 11.0) +47.23  x((w; — 20.0)/0.5) x (a1 — 6.0) —
40.61 x((w —20.0)/0.5) x (az — 11.0)
—50.62 x (a; — 6.0) x (ay — 11.0)).

f3(x) = —VWL
— (203.16 — 42.75 x ((w1 — 20.0)/0.5) + 56.67
x (a1 — 6.0) + 19.88 x ((by — 5.5)/0.5) — 12.89
% (a> — 11.0) — 35.09 x (@, — 6.0) x (b,
—5.5)/0.5) — 22.91 x (b1 — 5.5)/0.5) x (as
~11.0)).

fa(x) = —FF
= —(0.76 — 0.06 x ((/; —20.0)/2.5) +0.03 x ((I»
—2.5)/0.5) +0.02 x (a3 — 11.0) — 0.02 x ((b,
—6.5)/0.5) — 0.03 x ((ds — 12.0)/0.5) + 0.03
x ((I; —20.0)/2.5) x ((w; —20.0)/0.5) —0.02
x (I — 20.0)/2.5) x ((I, — 2.5)/0.5) 4 0.02
x ((I —20.0)/2.5) x ((b — 6.5)/0.5)).
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f5(x) = PG
=1.08 — 0.12 x ((I; — 20.0)/2.5) — 0.26 x ((w;
—20.0)/0.5) — 0.05 x (a> — 11.0) — 0.12 x ((b»
—6.5)/0.5) + 0.08 x (a; — 6.0) x ((b
—6.5)/0.5) +0.07 x (a2 — 6.0) x ((b2
—5.5)/0.5).

and x = (a],az,b],bz,d],dz,l],lz,W],Wz)T, such that
5§01§7, 10§a2§12,5§b1 §6,6Sb2§7,3§d1§
4,11.5<d, <125, 17.5<1;<£2252<[,<3,17.5
<w; <225 and 2<w, <3.

1.5 RWMaOPS5: Liquid-rocket Single Element
Injector Design [31]

The maximum temperature of the injector surface
(f1(x) = TFmax ), the temperature at three inches from the
injector surface (f,(x) = TW, ), the maximum temperature at
the tip of the injector post (f5(x) = TTmax ) and the objectives
to be considered include: the distance from the inlet com-
bustion (f,4(x) = X..) RWMaOP5 can be written as:

minimize
fl (X) = Tqux
=0.692 4+ 0.477 x 0. — 0.687 x AHA — 0.080

x AOA — 0.0650 x OPTT — 0.167 x &> — 0.0129
x AHA x o+ 0.0796 x AHA? — 0.0634 x AOA
x o0 — 0.0257 x AOA x AHA + 0.0877 x AOA?
—0.0521 x OPTT x o+ 0.00156 x OPTT
x AHA + 0.00198 x OPTT x AOA + 0.0184
x OPTT>.

fr(x)=TW,
=0.758+0.358 x . —0.807 x AHA +0.0925 x AOA
—0.0468 x OPTT —0.172 x o> +0.0106 x AHA X o
+0.0697 x AHA% —0.146 x AOA x 0.—0.0416
x AOA x AHA+0.102 x AOA? —0.0694 x OPTT
x o0—0.00503 x OPTT x AHA+-0.0151 x OPTT
x AOA+0.0173 x OPTT?.

f’&(x) = TT jpax
= 0.370 — 0.205 x o + 0.0307 x AHA +0.108

x AOA + 1.019 x OPTT — 0.135 x o + 0.0141
x AHA x o+ 0.0998 x AHA? + 0.208 x AOA
x oo — 0.0301 x AOA x AHA — 0.226 x AOA?
4+ 0.353 x OPTT x o — 0.0497 x OPTT x AOA
—0.423 x OPTT? + 0.202 x AHA x o> —0.281
x AOA x o> — 0.342 x AHA? x o — 0.245
x AHA? x AOA + 0.281 x AOA®> x AHA — 0.184
X OPTT? x o+ 0.281 x AHA x o x AOA.

fa(X) = Xoe = 0.153 — 0.322 x o+ 0.396 x AHA
+0.424 x AOA+
0.0226 x OPTT + 0.175 x o> + 0.0185 x AHA
x o —0.0701 x AHA%—
0.251 x AOA x a0+ 0.179 x AOA x AHA + 0.0150

x AOA? +0.0134 x OPTT
x o+ 0.0296 x OPTT x AHA + 0.0752 x OPTT
x AOA + 0.0192x

OPTT? and x = (o, AHA, AOA, OPTT)" .

Author Contributions Conceptualization, Kanak Kalita, Pradeep
Jangir, Sundaram B. Pandya; Formal analysis, Kanak Kalita, Pradeep
Jangir, Sundaram B. Pandya; Investigation, Kanak Kalita, Pradeep
Jangir, Sundaram B. Pandya; Methodology, Kanak Kalita, G. Shan-
mugasundar, Pradeep Jangir, Sundaram B. Pandya, Laith Abualigah,
Jasgurpreet Singh Chohan; Software, Kanak Kalita, Pradeep Jangir;
Writing—original draft, Kanak Kalita, G. Shanmugasundar, Pradeep
Jangir, Sundaram B. Pandya, Laith Abualigah, Jasgurpreet Singh
Chohan; Writing—review & editing, Kanak Kalita, G. Shanmuga-
sundar, Pradeep Jangir, Sundaram B. Pandya, Laith Abualigah, Jas-
gurpreet Singh Chohan; All authors have read and agreed to the
published version of the manuscript.

Funding This article was co-funded by the European Union under
the Research Excellence for Region Sustainability and High-tech
Industries (REFRESH) project number CZ.10.03.01/00/22_003/
0000048 via the Operational Programme Just Transition.

Data Availability The data presented in this study are available
through email upon request to the corresponding author.

Declarations

Conflicts of interest The authors declare no conflict of interest.
References

1. H. Jain, K. Deb, An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting
approach, part II: Handling constraints and extending to an
adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602-622
(2013). https://doi.org/10.1109/TEVC.2013.2281534

2. Z. Wang, Q. Zhang, A. Zhou, M. Gong, L. Jiao, Adaptive
replacement strategies for MOEA/D. IEEE. Trans. Cybernet.
46(2), 474-486 (2016). https://doi.org/10.1109/TCYB.2015.
2403849

3. J. Bader, E. Zitzler, Hype: an algorithm for fast hypervolume-
based many-objective optimization. Evol. Comput. 19(1), 45-76
(2011). https://doi.org/10.1162/EVCO_a_00009

4. N. Barakat, D. Sharma, Modelling and bi-objective optimization
of soil cutting and pushing process for bulldozer and its blade.
J. Institut. Eng. India. Series. C. 100(1), 129-143 (2019). https://
doi.org/10.1007/s40032-017-0421-7

5. S. Passone, P.W.H. Chung, V. Nassehi, Incorporating domain-
specific knowledge into a genetic algorithm to implement case-
based reasoning adaptation. Knowl. Based. Syst. 19(3), 192-201
(2006). https://doi.org/10.1016/j.knosys.2005.07.007

@ Springer


https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TCYB.2015.2403849
https://doi.org/10.1109/TCYB.2015.2403849
https://doi.org/10.1162/EVCO_a_00009
https://doi.org/10.1007/s40032-017-0421-7
https://doi.org/10.1007/s40032-017-0421-7
https://doi.org/10.1016/j.knosys.2005.07.007

J. Inst. Eng. India Ser. C

10.

11.

12.

13.

14.

15.

17.

19.

20.

. M.N. Nguyen, M.T. Tran, H.Q. Nguyen, T.Q. Bui, A multi-ma-

terial proportional topology optimization approach for compliant
mechanism problems. European. J. Mech. A/Sol. 100, 104957
(2023). https://doi.org/10.1016/j.euromechsol.2023.104957

. E.A. Triff, A. Rydahl, S. Karlsson, O. Sigmund, N. Aage, Simple

and efficient GPU accelerated topology optimization: codes and
applications. Comput. Methods Appl. Mech. Eng. 410, 116043
(2023). https://doi.org/10.1016/j.cma.2023.116043

. Z. Meng, B.S. Yildiz, G. Li, C. Zhong, S. Mirjalili, A.R. Yildiz,

Application of state-of-the-art multiobjective metaheuristic
algorithms in reliability-based design optimization: a compara-
tive study. Struct. Multidiscip. Optim. 66(8), 191 (2023). https://
doi.org/10.1007/s00158-023-03639-0

. Y. Meng, T. Li, L. Tang, Learning-based multi-objective evolu-

tionary algorithm for batching decision problem. Comput. Oper.
Res. 149, 106026 (2023). https://doi.org/10.1016/j.cor.2022.
106026

Qasim, S. Z., & Ismail, M. A. (2022). Fmpso: Fuzzy-dominance
based many-objective particle swarm optimization. Evolutionary
Intelligence, 1-22.

Q. Li, Z. Shi, Z. Xue, Z. Cui, Y. Xu, A many-objective evolu-
tionary algorithm for solving computation offloading problems
under uncertain communication conditions. Comput. Commun.
213, 22-32 (2024). https://doi.org/10.1016/j.comcom.2023.10.
020

J. Liu, Y. Wang, Y.-M. Cheung, A Co-dominance-based solution
estimation evolutionary algorithm for many-objective optimiza-
tion. Knowl.-Based Syst. 248, 108738 (2022). https://doi.org/10.
1016/j.knosys.2022.108738

K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-
objective optimization algorithm based on dominance and
decomposition. IEEE Trans. Evol. Comput. 19(5), 694-716
(2015). https://doi.org/10.1109/TEVC.2014.2373386

Y. Xiang, Y. Zhou, M. Li, Z. Chen, A vector angle-based evo-
lutionary algorithm for unconstrained many-objective optimiza-
tion. IEEE Trans. Evol. Comput. 21(1), 131-152 (2017). https://
doi.org/10.1109/TEVC.2016.2587808

E.M.N. Figueiredo, T.B. Ludermir, C.J.A. Bastos-Filho, Many
objective particle swarm optimizations. Inf. Sci. 374, 115-134
(2016). https://doi.org/10.1016/.ins.2016.09.026

. M. Premkumar, P. Jangir, R. Sowmya, L. Abualigah, MaOMFO:

many-objective moth flame optimizer using reference-point based
non-dominated sorting mechanism for global optimization prob-
lems. Decision. Sci. Lett. MaOMFO. 12(3), 571-590 (2023).
https://doi.org/10.5267/j.ds1.2023.4.006

T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, K. Sindhya, A sur-
rogate-assisted reference vector guided evolutionary algorithm
for computationally expensive many-objective optimization.
IEEE Trans. Evol. Comput. 22(1), 129-142 (2018). https://doi.
org/10.1109/TEVC.2016.2622301

. A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of

multiobjective evolutionary algorithms based on decomposition.
IEEE Trans. Evol. Comput. 21(3), 1-1 (2017). https://doi.org/10.
1109/TEVC.2016.2608507

R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector
guided evolutionary algorithm for many-objective optimization.
IEEE Trans. Evol. Comput. 20(5), 773-791 (2016). https://doi.
org/10.1109/TEVC.2016.2519378

M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based
evolutionary algorithm for many objective optimizations. IEEE

@ Springer

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Trans. Evol. Comput. 19(3), 445-460 (2015). https://doi.org/10.
1109/TEVC.2014.2339823

Y. Yuan, H. Xu, B. Wang, X. Yao, A new dominance relation-
based evolutionary algorithm for many-objective optimization.
IEEE Trans. Evol. Comput. 20(1), 16-37 (2016). https://doi.org/
10.1109/TEVC.2015.2420112

J. Luo, X. Huang, Y. Yang, X. Li, Z. Wang, J. Feng, A many-
objective particle swarm optimizer based on indicator and
direction vectors for many-objective optimization. Inf. Sci. 514,
166-202 (2020). https://doi.org/10.1016/j.ins.2019.11.047

Y. Cui, X. Meng, J. Qiao, A multi-objective particle swarm
optimization algorithm based on two-archive mechanism. Appl.
Soft Comput. 119, 108532 (2022). https://doi.org/10.1016/j.asoc.
2022.108532

W. Zhang, J. Liu, S. Tan, H. Wang, A decomposition-rotation
dominance based evolutionary algorithm with reference point
adaption for many-objective optimization. Expert Syst. Appl.
215, 119424 (2023). https://doi.org/10.1016/j.eswa.2022.119424
S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a
nature-inspired algorithm for global optimization. Neural Com-
put. Appl. 27(2), 495-513 (2016). https://doi.org/10.1007/
s00521-015-1870-7

R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, X. Yao, A
benchmark test suite for evolutionary many-objective optimiza-
tion. Com. Intellig. Syst. 3(1), 67-81 (2017). https://doi.org/10.
1007/s40747-017-0039-7

R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objec-
tive optimization problem suite. Appl. Soft Comput. 89, 106078
(2020). https://doi.org/10.1016/j.as0c.2020.106078

N. Panagant, S. Kumar, G.G. Tejani, N. Pholdee, S. Bureerat,
Many objective meta-heuristic methods for solving constrained
truss optimization problems: a comparative analysis. MethodsX
10, 102181 (2023). https://doi.org/10.1016/j.mex.2023.102181
N. Ahmad, S. Kamal, Z.A. Raza, T. Hussain, Multi-objective
optimization in the development of oil and water repellent cel-
lulose fabric based on response surface methodology and the
desirability function. Mater. Res. Express. 4(3), 035302 (2017).
https://doi.org/10.1088/2053-1591/aa5t6a

Y.S. Chen, Performance enhancement of multiband antennas
through a two-stage optimization technique: Chen et al. Int. J. RF.
Micro. Comput. Aided Eng. 27(2), €21064 (2017). https://doi.org/
10.1002/mmce.21064

T. Goel, R. Vaidyanathan, R.T. Haftka, W. Shyy, N.V. Queipo,
K. Tucker, Response surface approximation of pareto optimal
front in multi-objective optimization. Comput. Methods Appl.
Mech. Eng. 196(4-6), 879-893 (2007). https://doi.org/10.1016/].
c¢ma.2006.07.010

C.A. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, Evo-
lutionary algorithms for solving multi-objective problems genetic
and evolutionary computation series (Springer, York City, 2007)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.


https://doi.org/10.1016/j.euromechsol.2023.104957
https://doi.org/10.1016/j.cma.2023.116043
https://doi.org/10.1007/s00158-023-03639-0
https://doi.org/10.1007/s00158-023-03639-0
https://doi.org/10.1016/j.cor.2022.106026
https://doi.org/10.1016/j.cor.2022.106026
https://doi.org/10.1016/j.comcom.2023.10.020
https://doi.org/10.1016/j.comcom.2023.10.020
https://doi.org/10.1016/j.knosys.2022.108738
https://doi.org/10.1016/j.knosys.2022.108738
https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1109/TEVC.2016.2587808
https://doi.org/10.1109/TEVC.2016.2587808
https://doi.org/10.1016/j.ins.2016.09.026
https://doi.org/10.5267/j.dsl.2023.4.006
https://doi.org/10.1109/TEVC.2016.2622301
https://doi.org/10.1109/TEVC.2016.2622301
https://doi.org/10.1109/TEVC.2016.2608507
https://doi.org/10.1109/TEVC.2016.2608507
https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1109/TEVC.2014.2339823
https://doi.org/10.1109/TEVC.2014.2339823
https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1016/j.ins.2019.11.047
https://doi.org/10.1016/j.asoc.2022.108532
https://doi.org/10.1016/j.asoc.2022.108532
https://doi.org/10.1016/j.eswa.2022.119424
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1016/j.mex.2023.102181
https://doi.org/10.1088/2053-1591/aa5f6a
https://doi.org/10.1002/mmce.21064
https://doi.org/10.1002/mmce.21064
https://doi.org/10.1016/j.cma.2006.07.010
https://doi.org/10.1016/j.cma.2006.07.010

	Many-Objective Multi-Verse Optimizer (MaOMVO): A Novel Algorithm for Solving Complex Many-Objective Engineering Problems
	Abstract
	Introduction
	Multi-Verse Optimizer
	Proposed Many-Objective Multi-Verse Optimizer (MaOMVO)
	Results and Discussions
	Experimental Settings
	Benchmarks
	Comparison Algorithms and Parameter Settings
	Performance Measures

	Experimental Results on MaF Problems
	Experimental Results on RWMaOP Problems

	Conclusions
	Appendix 1: Real World Many-objective Engineering Design Optimization Problems:
	1.1 RWMaOP1: Car Cab Design Problem [27]
	1.2 RWMaOP2: 10-Bar Truss Structure Problem [28]
	1.3 RWMaOP3: Water and Oil Repellent Fabric Development [29]
	1.4 RWMaOP4: Ultra-Wideband Antenna Design [30]
	1.5 RWMaOP5: Liquid-rocket Single Element Injector Design [31]

	Author Contributions
	Data Availability
	References


